scholarly journals Assessing the impact of climate variability and human activities on streamflow variation

2016 ◽  
Vol 20 (4) ◽  
pp. 1547-1560 ◽  
Author(s):  
Jianxia Chang ◽  
Hongxue Zhang ◽  
Yimin Wang ◽  
Yuelu Zhu

Abstract. Water resources in river systems have been changing under the impact of both climate variability and human activities. Assessing the respective impact on decadal streamflow variation is important for water resource management. By using an elasticity-based method and calibrated TOPMODEL and VIC hydrological models, we quantitatively isolated the relative contributions that human activities and climate variability made to decadal streamflow changes in the Jinghe basin, located in the northwest of China. This is an important watershed of the Shaanxi province that supplies drinking water for a population of over 6 million people. The results showed that the maximum value of the moisture index (E0∕P) was 1.91 and appeared in 1991–2000, and the decreased speed of streamflow was higher since 1990 compared with 1960–1990. The average annual streamflow from 1990 to 2010 was reduced by 26.96 % compared with the multiyear average value (from 1960 to 2010). The estimates of the impacts of climate variability and human activities on streamflow decreases from the hydrological models were similar to those from the elasticity-based method. The maximum contribution value of human activities was 99 % when averaged over the three methods, and appeared in 1981–1990 due to the effects of soil and water conservation measures and irrigation water withdrawal. Climate variability made the greatest contribution to streamflow reduction in 1991–2000, the values of which was 40.4 %. We emphasized various source of errors and uncertainties that may occur in the hydrological model (parameter and structural uncertainty) and elasticity-based method (model parameter) in climate change impact studies.

2015 ◽  
Vol 12 (12) ◽  
pp. 12747-12788
Author(s):  
J. Chang ◽  
H. Zhang ◽  
Y. Wang ◽  
Y. Zhu

Abstract. Water resources in river systems have been changing under the impact of both climate variability and human activities. Assessing the respective impact on decadal streamflow variation is important for water resource management. By using an elasticity-based method and calibrated TOPMODEL and VIC hydrological models, we quantitatively isolated the relative contributions that human activities and climate variability made to decadal streamflow changes in Jinghe basin, located in the northwest of China. This is an important watershed of Shaanxi Province that supplies drinking water for a population of over 6 million people. The results showed that the maximum value of the moisture index (E0/P) was 1.91 and appeared in 1991–2000 and that the decreased speed of streamflow was higher since 1990. The average annual streamflow from 1990 to 2010 was reduced by 26.96 % compared with the multi-year average value. The estimates of climate variability and the impact of human activities on streamflow decreases from the hydrological models were similar to those from the elasticity-based method. The maximum contribution value of human activities was appeared in 1981–1990 due to the effects of soil and water conservation measures and irrigation water withdrawal. Climate variability made the greatest contribution to reduction in 1991–2000, the values of which were 99 and 40.4 % when averaged over the three methods. We emphasized various source of errors and uncertainties that may occur in the hydrological model (parameter and structural uncertainty) and elasticity-based method (model parameter) in climate change impact studies.


2015 ◽  
Vol 12 (6) ◽  
pp. 5251-5291 ◽  
Author(s):  
J. Chang ◽  
H. Zhang ◽  
Y. Wang ◽  
Y. Zhu

Abstract. Water resources in river systems have been changing under the impacts of both climate variability and human activities. Assessing the respective impacts on decadal streamflow variation is important for water resources management. By using an elasticity-based method, calibrated TOPMODEL and VIC hydrologic models, we have quantitatively isolated the relative contributions that human activity and climate variability made to decadal streamflow changes in Jinhe basin located in northwest of China. This is an important watershed of Shaanxi Province that supplies drinking water for a population of over 6 million. The results from the three methods show that both human activity and climatic differences can have major effects on catchment streamflow, and the estimates of climate variability impacts from the hydrological models are similar to those from the elasticity-based method. Compared with the baseline period of 1960–1970, streamflow greatly decreased during 2001–2010. The change impacts of human activity and climate variability in 2001–2010 were about 83.5 and 16.5% of the total reduction respectively when averaged over the three methods. The maximum contribution value of human activity was appeared in 1981–1990 due to the effects of soil and water conservation measures and irrigation water withdrawal, which was 95, 112.5 and 92.4% from TOPMODEL, VIC model and elasticity-based method respectively. The maximum value of the aridity index (E0/P) was 1.91 appeared in 1991–2000. Compared with 1960–1970 baseline period, climate variability made the greatest contributions reduction in 1991–2000, which was 47.4, 43.9 and 29.9% from TOPMODEL, VIC model and elasticity-based method respectively. We emphasized various source of errors and uncertainties that may occurre in the hydrological model (parameter and structural uncertainty) and elasticity-based method (model parameter) in climate change impact studies.


2021 ◽  
Author(s):  
Naota Hanasaki ◽  
Hikari Matsuda ◽  
Masashi Fujiwara ◽  
Yukiko Hirabayashi ◽  
Shinta Seto ◽  
...  

Abstract. Global hydrological models that include human activities are powerful tools for assessing water availability and use at global and continental scales. Such models are typically applied at a spatial resolution of 30 arcminutes (approximately 50 km). In recent years, some 5-arcminute (9-km) applications have been reported, but with numerous technical challenges, including the validation of calculations for more than a million grid cells and the conversion of simulation results into meaningful information relevant to water resource management. Here, the H08 global water resources model was applied in two ways to Kyushu Island in Japan at resolution of 1 arcminute (2 km), and the detailed results were compared. One method involved feeding interpolated global meteorological and geographic data into the default global model (GLB; in accordance with previous high-resolution applications). For the other method, locally derived boundary conditions were input to the localized model (LOC; this method can be easily extended and applied to other regions, at least across Japan). The results showed that GLB cannot easily reproduce the historical record, especially for variables related to human activities (e.g., dam operation and water withdrawal). LOC is capable of estimating natural and human water balance components at daily time scales and providing reliable information for regional water resource assessment. The results highlight the importance of improving data preparation and modeling methods to represent water management and use in hyper-resolution global hydrology simulations.


Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 257
Author(s):  
Peng Guo ◽  
Jiqiang Lyu ◽  
Weining Yuan ◽  
Xiawan Zhou ◽  
Shuhong Mo ◽  
...  

This study examined the Chabagou River watershed in the gully region of the Loess Plateau in China’s Shaanxi Province, and was based on measured precipitation and runoff data in the basin over a 52-year period (1959–2010), land-use types, normalized difference vegetation index (NDVI), and other data. Statistical models and distributed hydrological models were used to explore the influences of climate change and human activity on the hydrological response and on the temporal and spatial evolution of the basin. It was found that precipitation and runoff in the gully region presented a downward trend during the 52-year period. Since the 1970s, the hydrological response to human activities has become the main source of regional hydrological evolution. Evapotranspiration from the large silt dam in the study area has increased. The depth of soil water decreased at first, then it increased by amount that exceeded the evaporation increase observed in the second and third change periods. The water and soil conservation measures had a beneficial effect on the ecology of the watershed. These results provide a reference for water resource management and soil and water conservation in the study area.


2018 ◽  
Vol 09 (04) ◽  
pp. 1850010
Author(s):  
KAORI TEMBATA ◽  
KENJI TAKEUCHI

This study examines the effect of climate variability on water resource management during droughts. We use data from local droughts in Japan over three decades to investigate how variability in precipitation and temperature affects water restrictions implemented by drought coordination councils. We find that climate variability is significantly related to water restrictions in terms of both intensity and duration. The regression results show that a 100-mm decrease in annual precipitation is associated with a 0.2% increase in the water withdrawal restriction rate and an increase of one day in the restriction period. Our findings suggest that climate variability might induce more stringent water restrictions, implying negative consequences for water availability. This study thus shows the importance of strategically building adaptive capacity to climate change due to the risks of extreme weather events, such as prolonged droughts and extended summer seasons.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3229
Author(s):  
Binbin Lin ◽  
Yicheng Wang ◽  
Hejia Wang ◽  
Weihua Xiao

Coal mining and soil-water conservation are the two major human interventions on the Loess Plateau in China. Analyzing their impacts on hydrological processes is of great significance for sustainable water resource management. Using hydrological simulation (Soil and Water Assessment Tool, SWAT) and a data-driven method (double mass curve, DMC), the contributions of these two human activities and climate change to the runoff decrease were analyzed in the upper Fenhe River. The runoff in the three affected periods (1967–1987, 1988–1994, and 1995–2017) decreased by 7.5%, 28.2%, and 24.1%, respectively, compared with the base period (1957–1966). In the first affected period (1967–1987), the amount of coal mining activities was small, human activities had little impact on runoff. In the second (1988–1994) and third (1995–2017) periods, as the coal mining and soil-water conservation intensified, their contributions to the runoff decrease rapidly increased. Due to the uncertainties in the model structure and parameters, in addition to the impact of the data accuracy, the results obtained from the two methods were different, but the proportions and the trends of the contribution rates in the different periods were consistent.


2020 ◽  
Vol 2 (2) ◽  
pp. 27-34
Author(s):  
Japhet Kipngeno ◽  
Paul A Omondi ◽  
Abdirizak A Nunow

Governments and environmental conservationists agree that wetland resources need to be utilized sustainably to ensure the continued presence of wetlands and their ecological goods and services. Ideally, wetlands should be integrated into the national and local land use plans to ensure sustainable use and management of the resources. However, this is not the case as far as Kenya is concerned. Instead, there is rampant exploitation of wetlands by individuals, organizations and even government agencies with no regard to environmental conservation. Therefore, this study was undertaken to investigate the impact of human activities on wetland conservation with a focus on the Sondu River Basin. The objective of the study was to establish the effects of human settlements on the conservation of the Sondu River Basin. The study was grounded on the integrated water resource management theory. This study adopted a concurrent triangulation research design which entailed a combination of both qualitative and quantitative data. The target population for the study was 164 respondents in which a sample of 144 respondents was selected using Slovin’s formula. The sample was randomly selected with the inclusion criterion being that the chosen respondents were homogeneously engaged in human activities that affected wetland conservation. Intensive data cleaning exercise was carried out including checking for outliers, missing data imputation and variable transformation. The collected data were analysed by use of descriptive statistics such as frequencies, percentages and summation and presented in the form of tables and charts. The results of the study will inform policy and practice in the management and conservation of the Sondu River wetland area. The study established that human activities such as farming, logging, construction, drilling, building and construction and settlements have immensely hampered conservation of Sondu wetland. Further, it was noted that it is indeed possible to gain vital information about the human activities responsible for the degradation of wetlands.


2017 ◽  
Vol 49 (1) ◽  
pp. 177-193 ◽  
Author(s):  
Zharong Pan ◽  
Xiaohong Ruan ◽  
Mingkai Qian ◽  
Jian Hua ◽  
Nan Shan ◽  
...  

AbstractThe water shortage in the Huaihe River Basin (HRB), China, has been aggravated by population growth and climate change. To identify the characteristics of streamflow change and assess the impact of climate variability and human activities on hydrological processes, approximately 50 years of natural and observed streamflow data from 20 hydrological stations were examined. The Mann–Kendall test was employed to detect trends. The results showed the following. (i) Both the natural and the observed streamflow in the HRB present downward trends, and the decreasing rate of observed streamflow is generally faster than that of the natural streamflow. (ii) For the whole period, negative trends dominate in the four seasons in the basin. The highest decreasing trends for two kinds of streamflow both occurred in spring, and the lowest ones were in autumn and winter. (iii) Based on the above analysis and quantifying assessment for streamflow decrease, human activity was the main driving factor in the Xuanwu (80.78%), Zhuangqiao (79.92%), Yongcheng (74.80%), and Mengcheng (64.73%) stations which all belong to the Huaihe River System (HRS). On the other hand, climate variability was the major driving factor in the Daguanzhuang (68.89%) and Linyi (63.38%) stations which all belong to the Yishusi River System (YSR).


2020 ◽  
Vol 20 (3) ◽  
pp. 889-899 ◽  
Author(s):  
Farshid Zolfagharpour ◽  
Bahram Saghafian ◽  
Majid Delavar

Abstract Human activities (HA) and/or climate variability (CV) may be two major factors impacting natural flow regime (NFR). This study was conducted following two objectives. The first was to develop scenario-based hydrological modeling (SBHM) to disentangle the natural and human-induced impacts on flow regime. The second objective was to quantify the interaction between temperature and precipitation for the assessment of CV. To do so, six scenarios were defined to evaluate either the impact of HA, CV or both. Four major results were achieved: (1) the interaction between temperature and precipitation was more prominent in basin upstream areas, which reduced the streamflow by 9% in the entire simulation period; (2) when separating the effects of climatic and human factors, SBHM results in comparison with those of the climate elasticity analysis showed no significant differences; (3) HA were the main force driving the streamflow reduction in the study basin; (4) a 5 °C increase in air temperature in the future would lead to an increase of 1.6% in average annual streamflow, and 41% in peak runoff.


Sign in / Sign up

Export Citation Format

Share Document