scholarly journals Methodology based on modelling processes and the characterisation of natural flows for risk assessment and water management under the influence of climate change

2019 ◽  
Author(s):  
Sara Suárez-Almiñana ◽  
Abel Solera ◽  
Jaime Madrigal ◽  
Joaquín Andreu ◽  
Javier Paredes-Arquiola

Abstract. Climate change and its possible effects on water resources has become an increasingly near threat. Therefore, the study of these impacts in highly regulated systems and those suffering extreme events is essential to deal with them effectively. This paper responds to the need of an effective methodology that integrates the climate change projections into water planning and management to guide complex basin decision-making through drought risk and management assessments. In this study is presented an adaptive method based on a model chain and correction processes, where the main outcomes are the impacts on future natural inflows, a drought risk indicator and the simulation of the future water storage of the water resources system (WRS) under consideration. The proposed methodology was applied in the Júcar River Basin (JRB) due to its complexity and the multiannual drought events it goes through. The results shown a decreasing tendency of future inflows to the basin, and the drought risk indicator shows a high probability (≈ 80 %) of being under 50 % of total capacity of the WRS in the near future, but the uncertainty is considerable from the middle century onwards, indicating that an improvement in the skill of climate projections is required. Thus, this paper also highlights the difficulties of developing this type of methods, since the conclusions on climate change impact assessment depend on partial decisions taken during the methodological processes. However, the main results call for action in the JRB and the tool developed can be considered as a feasible option to facilitate and support decision-making in future water planning and management.

2020 ◽  
Vol 24 (11) ◽  
pp. 5297-5315
Author(s):  
Sara Suárez-Almiñana ◽  
Abel Solera ◽  
Jaime Madrigal ◽  
Joaquín Andreu ◽  
Javier Paredes-Arquiola

Abstract. Climate change and its possible effects on water resources has become an increasingly near threat. Therefore, the study of these impacts in highly regulated systems and those suffering extreme events is essential to deal with them effectively. This study responds to the need for an effective method to integrate climate change projections into water planning and management analysis in order to guide the decision-making, taking into account drought risk assessments. Therefore, this document presents a general and adaptive methodology based on a modeling chain and correction processes, whose main outcomes are the impacts on future natural inflows, a drought risk indicator, and the simulation of future water storage in the water resources system (WRS). This method was applied in the Júcar River basin (JRB) due to its complexity and the multiannual drought events it suffers recurrently. The results showed a worrying decrease in future inflows, as well as a high probability (≈80 %) of being under 50 % of total capacity of the WRS in the near future. However, the uncertainty of the results was considerable from the mid-century onwards, indicating that the skill of climate projections needs to be improved in order to obtain more reliable results. Consequently, this paper also highlights the difficulties of developing this type of method, taking partial decisions to adapt them as far as possible to the basin in an attempt to obtain clearer conclusions on climate change impact assessments. Despite the high uncertainty, the results of the JRB call for action and the tool developed can be considered as a feasible and robust method to facilitate and support decision-making in complex basins for future water planning and management.


Eos ◽  
2019 ◽  
Vol 100 ◽  
Author(s):  
Kimberly Cartier

Hydrologists are creating watershed-scale projections for water resources managers and tools that managers can use to plan for the effects of climate change.


2017 ◽  
Vol 21 (4) ◽  
pp. 2143-2161 ◽  
Author(s):  
Yacouba Yira ◽  
Bernd Diekkrüger ◽  
Gero Steup ◽  
Aymar Yaovi Bossa

Abstract. This study evaluates climate change impacts on water resources using an ensemble of six regional climate models (RCMs)–global climate models (GCMs) in the Dano catchment (Burkina Faso). The applied climate datasets were performed in the framework of the COordinated Regional climate Downscaling Experiment (CORDEX-Africa) project.After evaluation of the historical runs of the climate models' ensemble, a statistical bias correction (empirical quantile mapping) was applied to daily precipitation. Temperature and bias corrected precipitation data from the ensemble of RCMs–GCMs was then used as input for the Water flow and balance Simulation Model (WaSiM) to simulate water balance components.The mean hydrological and climate variables for two periods (1971–2000 and 2021–2050) were compared to assess the potential impact of climate change on water resources up to the middle of the 21st century under two greenhouse gas concentration scenarios, the Representative Concentration Pathways (RCPs) 4.5 and 8.5. The results indicate (i) a clear signal of temperature increase of about 0.1 to 2.6 °C for all members of the RCM–GCM ensemble; (ii) high uncertainty about how the catchment precipitation will evolve over the period 2021–2050; (iii) the applied bias correction method only affected the magnitude of the climate change signal; (iv) individual climate models results lead to opposite discharge change signals; and (v) the results for the RCM–GCM ensemble are too uncertain to give any clear direction for future hydrological development. Therefore, potential increase and decrease in future discharge have to be considered in climate change adaptation strategies in the catchment. The results further underline on the one hand the need for a larger ensemble of projections to properly estimate the impacts of climate change on water resources in the catchment and on the other hand the high uncertainty associated with climate projections for the West African region. A water-energy budget analysis provides further insight into the behavior of the catchment.


2021 ◽  
Author(s):  
Kepa Solaun ◽  
Gerard Alleng ◽  
Adrián Flores ◽  
Chiquita Resomardono ◽  
Katharina Hess ◽  
...  

Suriname is highly vulnerable to the effects of climate change. Among the factors that exacerbate its vulnerability are its dependency on fossil fuels, the degradation of important ecosystems (e.g., mangroves), and the fact that 87% of the population, and most of the countrys economic activity is located within the low-lying coastal area. Many sectors are at risk of suffering losses and damage caused by gradual changes and extreme events related to climate change. For Suriname to develop sustainably, it should incorporate climate change and its effects into its decision-making process based on scientific- evidence. The State of the Climate Report analyzes Surinames historical climate (1990-2014) and provides climate projections for three time horizons (2020-2044, 2045-2069, 2070-2094) through two emissions scenarios (intermediate/ SSP2-4.5 and severe/ SSP5-8.5). The analysis focuses on changes in sea level, temperature, precipitation, relative humidity, and winds for the seven subnational locations of Paramaribo, Albina, Bigi Pan MUMA, Brokopondo, Kwamalasamutu, Tafelberg Natural Reserve, and Upper Tapanahony. The Report also analyzes climate risk for the countrys ten districts by examining the factors which increase their exposure and vulnerability on the four most important sectors affected by climate change: infrastructure, agriculture, water, and forestry, as well as examining the effects across the sectors. The State of the Climate Report provides essential inputs for Suriname to develop and update its climate change policies and targets. These policies and targets should enable an adequate mainstreaming of climate change adaptation and resilience enhancementinto day-to-day government operations. It is expected that the Report will catalyze similar efforts in the future to improve decision-making by providing science-based evidence.


2019 ◽  
Vol 11 (2) ◽  
pp. 308 ◽  
Author(s):  
Jesús Vargas ◽  
Pilar Paneque

Droughts are risks characterized by their complexity, uncertainty, and a series of other features, which differentiate them from other natural disasters and affect the strategies designed to manage them. These characteristics highlight the close relationship between drought management and water resources management. The following hypothesis is raised in this study—unsatisfactory integration of a drought-risk and water resources management strategies, increases the vulnerability to drought. To corroborate this hypothesis, the Spanish case was analyzed, where droughts are a recurrent phenomenon, due to the Mediterranean climate. Starting from the Intergovernmental Panel on Climate Change (IPCC) framework, which has been proposed to characterize vulnerability as a function of exposure, sensitivity, and adaptive capacity, this study analyzed the vulnerability in the Spanish River Basin Districts, through—(i) the integration of the predictable effects of climate change and the increased risk of exposure in hydrologic planning; (ii) the pressure on water resources that determines the sensitivity of the systems; and (iii) the development and implementation of drought management plans as a fundamental tool, in order to adapt before these events occur. The results showed that despite important advances in the process of conceiving and managing droughts, in Spain, there are still important gaps for an adequate integration of droughts risk into the water resource strategies. Therefore, despite the improvements, drought-risk vulnerability of the systems remained high.


Author(s):  
Kuo Li ◽  
Jie Pan

Abstract. Climate change has been a hotspot of scientific research in the world for decades, which caused serious effects of agriculture, water resources, ecosystem, environment, human health and so on. In China, drought accounts for almost 50 % of the total loss among all the meteorological disasters. In this article the interpolated and corrected precipitation of one GCM (HadGEM2-ES) output under four emission scenarios (RCP2.6, 4.5, 6.0, 8.5) were used to analyze the drought. The standardized precipitation index (SPI) calculated with these data was used to assess the climate change impact on droughts from meteorological perspectives. Based on five levels of SPI, an integrated index of drought hazard (IIDH) was established, which could explain the frequency and intensity of meteorological drought in different regions. According to yearbooks of different provinces, 15 factors have been chosen which could represent the impact of drought on human being, crops, water resources and economy. Exposure index, sensitivity index and adaptation index have been calculated in almost 2400 counties and vulnerability of drought has been evaluated. Based on hazard and vulnerability evaluation of drought, risk assessment of drought in China under the RCP2.6, 4.5, 6.0, 8.5 emission scenarios from 2016 to 2050 has been done. Results from such a comprehensive study over the whole country could be used not only to inform on potential impacts for specific sectors but also can be used to coordinate adaptation/mitigation strategies among different sectors/regions by the central government.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1862 ◽  
Author(s):  
Tae-Woong Kim ◽  
Muhammad Jehanzaib

Climate change is undoubtedly one of the world’s biggest challenges in the 21st century. Drought risk analysis, forecasting and assessment are facing rapid expansion, not only from theoretical but also practical points of view. Accurate monitoring, forecasting and comprehensive assessments are of the utmost importance for reliable drought-related decision-making. The framework of drought risk analysis provides a unified and coherent approach to solving inference and decision-making problems under uncertainty due to climate change, such as hydro-meteorological modeling, drought frequency estimation, hybrid models of forecasting and water resource management. This Special Issue will provide researchers with a summary of the latest drought research developments in order to identify and understand the profound impacts of climate change on drought risks and water resources. The ten peer-reviewed articles collected in this Special Issue present novel drought monitoring and forecasting approaches, unique methods for drought risk estimation and creative frameworks for environmental change assessment. These articles will serve as valuable references for future drought-related disaster mitigations, climate change interconnections and food productivity impacts.


2019 ◽  
Vol 11 (17) ◽  
pp. 4764 ◽  
Author(s):  
Anna Sperotto ◽  
Josè Luis Molina ◽  
Silvia Torresan ◽  
Andrea Critto ◽  
Manuel Pulido-Velazquez ◽  
...  

With increasing evidence of climate change affecting the quality of water resources, there is the need to assess the potential impacts of future climate change scenarios on water systems to ensure their long-term sustainability. The study assesses the uncertainty in the hydrological responses of the Zero river basin (northern Italy) generated by the adoption of an ensemble of climate projections from 10 different combinations of a global climate model (GCM)–regional climate model (RCM) under two emission scenarios (representative concentration pathways (RCPs) 4.5 and 8.5). Bayesian networks (BNs) are used to analyze the projected changes in nutrient loadings (NO3, NH4, PO4) in mid- (2041–2070) and long-term (2071–2100) periods with respect to the baseline (1983–2012). BN outputs show good confidence that, across considered scenarios and periods, nutrient loadings will increase, especially during autumn and winter seasons. Most models agree in projecting a high probability of an increase in nutrient loadings with respect to current conditions. In summer and spring, instead, the large variability between different GCM–RCM results makes it impossible to identify a univocal direction of change. Results suggest that adaptive water resource planning should be based on multi-model ensemble approaches as they are particularly useful for narrowing the spectrum of plausible impacts and uncertainties on water resources.


2020 ◽  
Author(s):  
Jason A. Lowe ◽  
Carol McSweeney ◽  
Chris Hewitt

<p>There is clear evidence that, even with the most favourable emission pathways over coming decades, there will be a need for society to adapt to the impacts of climate variability and change. To do this regional, national and local actors need up-to-date information on the changing climate with clear accompanying detail on the robustness of the information. This needs to be communicated to both public and private sector organisations, ideally as part of a process of co-developing solutions.</p><p>EUCP is an H2020 programme that began in December 2017 with the aim of researching and testing the provision of improved climate predictions and projections for Europe for the next 40+ years, and drawing on the expertise of researchers from a number of major climate research institutes across Europe. It is also engaging with users of climate change information through a multiuser forum (MUF) to ensure that what we learn will match the needs of the people who need if for decision making and planning.</p><p>The first big issue that EUCP seeks to address is how better to use ensembles of climate model projections, moving beyond the one-model-one-vote philosophy. Here, the aim is to better understand how model ensembles might be constrained or sub-selected, and how multiple strands of information might be combined into improved climate change narratives or storylines. The second area where EUCP is making progress is in the use of very high-resolution regional climate simulations that are capable of resolving aspects of atmospheric convection. Present day and future simulations from a new generation of regional models ae being analysed in EUCP and will be used in a number of relevant case studies. The third issue that EUCP will consider is how to make future simulations more seamless across those time scales that are most relevant user decision making. This includes generating a better understanding of predictability over time and its sources in initialised forecasts, and also how to transition from the initialised forecasts to longer term boundary forced climate projections.</p><p>This presentation will provide an overview of the challenges being addressed by EUCP and the approaches the project is using.</p><p><br><br></p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document