scholarly journals PERFORMANCE ANALYSIS OF SISPELSAT MSK-DGNSS RADIO SIGNAL IN PENINSULAR MALAYSIA

Author(s):  
M. S. A. Razak ◽  
T. A. Musa ◽  
R. Othman ◽  
M. F. Yazair ◽  
A. Z. Sha’ameri ◽  
...  

<p><strong>Abstract.</strong> The use of Global Navigation Satellite System (GNSS) has become essential in providing location based information and navigation. Due to low accuracy of navigation solution, differential technique such as radio-beacon DGNSS has been used widely to augment the user single positioning using GPS. The <i>Sistem Pelayaran Satelit</i> (SISPELSAT) is a national DGNSS radio-beacon system in Malaysia consists of four broadcasting and two monitoring stations operated and managed by Marine Department of Malaysia. It provides a range of frequency from 283.5 to 325<span class="thinspace"></span>kHz Minimum Shift Keying (MSK) radio-beacon DGNSS correction service within the shore of Peninsular Malaysia. In this study, the performance of SISPELSAT radio signal was assessed on-board of the Malaysian Vessel (MV) Pedoman and MV Pendamar. The study area covers 20<span class="thinspace"></span>km shore distance extending from shoreline of Peninsular Malaysia with continuous tracking from SISPELSAT radio beacon signal. The DGPS observation data as well as the coverage of the signal strength, signal-to-noise ratio, accuracy and DGPS status were recorded for data processing and further analysis of SISPELSAT radio signal performance.</p>

2019 ◽  
Vol 11 (2) ◽  
pp. 139 ◽  
Author(s):  
Feng Zhu ◽  
Xianlu Tao ◽  
Wanke Liu ◽  
Xiang Shi ◽  
Fuhong Wang ◽  
...  

The continual miniaturization of mass-market sensors built in mobile intelligent terminals has inspired the development of accurate and continuous navigation solution for portable devices. With the release of Global Navigation Satellite System (GNSS) observations from the Android Nougat system, smartphones can provide pseudorange, Doppler, and carrier phase observations of GNSS. However, it is still a challenge to achieve the seamless positioning of consumer applications, especially in environments where GNSS signals suffer from a low signal-to-noise ratio and severe multipath. This paper introduces a dedicated android smartphone application called Walker that integrates the GNSS navigation solution and MEMS (micro-electromechanical systems) sensors to enable continuous and precise pedestrian navigation. Firstly, we introduce the generation of GNSS and MEMS observations, in addition to the architecture of Walker application. Then the core algorithm in Walker is given, including the time-differenced carrier phase improved GNSS single-point positioning and the integration of GNSS and Pedestrian Dead Reckoning (PDR). Finally, the Walker application is tested and the observations of GNSS and MEMS are assessed. The static experiment shows that, with GNSS observations, the RMS (root mean square) values of east, north, and up positioning error are 0.49 m, 0.37 m, and 1.01 m, respectively. Furthermore, the kinematic experiment verifies that the proposed method is capable of obtaining accuracy within 1–3 m for smooth and continuous navigation.


2018 ◽  
Vol 10 (8) ◽  
pp. 1245 ◽  
Author(s):  
Mehrez Zribi ◽  
Erwan Motte ◽  
Nicolas Baghdadi ◽  
Frédéric Baup ◽  
Sylvia Dayau ◽  
...  

The aim of this study is to analyze the sensitivity of airborne Global Navigation Satellite System Reflectometry (GNSS-R) on soil surface and vegetation cover characteristics in agricultural areas. Airborne polarimetric GNSS-R data were acquired in the context of the GLORI’2015 campaign over two study sites in Southwest France in June and July of 2015. Ground measurements of soil surface parameters (moisture content) and vegetation characteristics (leaf area index (LAI), and vegetation height) were recorded for different types of crops (corn, sunflower, wheat, soybean, vegetable) simultaneously with the airborne GNSS-R measurements. Three GNSS-R observables (apparent reflectivity, the reflected signal-to-noise-ratio (SNR), and the polarimetric ratio (PR)) were found to be well correlated with soil moisture and a major vegetation characteristic (LAI). A tau-omega model was used to explain the dependence of the GNSS-R reflectivity on both the soil moisture and vegetation parameters.


2016 ◽  
Vol 12 (03) ◽  
pp. 64
Author(s):  
Haifeng Hu

Abstract—An online automatic disaster monitoring system can reduce or prevent geological mine disasters to protect life and property. Global Navigation Satellite System receivers and the GeoRobot are two kinds of in-situ geosensors widely used for monitoring ground movements near mines. A combined monitoring solution is presented that integrates the advantages of both. In addition, a geosensor network system to be used for geological mine disaster monitoring is described. A complete online automatic mine disaster monitoring system including data transmission, data management, and complex data analysis is outlined. This paper proposes a novel overall architecture for mine disaster monitoring. This architecture can seamlessly integrate sensors for long-term, remote, and near real-time monitoring. In the architecture, three layers are used to collect, manage and process observation data. To demonstrate the applicability of the method, a system encompassing this architecture has been deployed to monitor the safety and stability of a slope at an open-pit mine in Inner Mongolia.


2021 ◽  
Author(s):  
Mauricio Kenji Yamawaki ◽  
Felipe Geremia-Nievinski ◽  
João Francisco Monico

Global Navigation Satellite System Reflectometry (GNSS-R) has emerged as a promising remote sensing technique for coastal sea level monitoring. The GNSS-R based on signal-to-noise ratio (SNR) observations employs a single antenna and a conventional receiver. It performs best for low elevation satellites, where direct and reflected radio waves are very similar in polarization and direction of arrival. One of the disadvantages of SNR-based GNSS-R for sea level altimetry is its low temporal resolution, which is of the order of one hour for each independent satellite pass. Here we present a proof-of-concept based on a synthetic vertical array. It exploits the mechanical movement of a single antenna at high rate (about 1 Hz). SNR observations can then be fit to a known modulation, of the order of the antenna sweeping rate. We demonstrate that centimetric altimetry precision can be achieved in a 5-minute session. [©2021 IEEE]


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 708 ◽  
Author(s):  
Liang Huang ◽  
Yi Liu ◽  
Qiong Tang ◽  
Guanyi Chen ◽  
Zhuangkai Wang ◽  
...  

By using multi-satellite observations of the L1 signal-to-noise ratio (SNR) from the Cyclone Global Navigation Satellite System (CYGNSS) taken in 2017, we present the occurrence of nighttime topside ionospheric irregularities in low-latitude and equatorial regions. The most significant finding of this study is the existence of longitudinal structures with a wavenumber 4 pattern in the topside irregularities. This suggests that lower atmospheric waves, especially a daytime diurnal eastward-propagating zonal wave number-3 nonmigrating tide (DE3), might play an important role in the generation of topside plasma bubbles during the low solar minimum. Observations of scintillation events indicate that the maximum occurrence of nighttime topside ionospheric irregularities occurs on the magnetic equator during the equinoxes. The current work, which could be regarded as an important update of the previous investigations, would be readily for the further global analysis of the topside ionospheric irregularities.


2018 ◽  
Vol 8 (11) ◽  
pp. 2322 ◽  
Author(s):  
Lin Zhao ◽  
Mouyan Wu ◽  
Jicheng Ding ◽  
Yingyao Kang

The strategic position of the polar area and its rich natural resources are becoming increasingly important, while the northeast and northwest passages through the Arctic are receiving much attention as glaciers continue to melt. The global navigation satellite system (GNSS) can provide real-time observation data for the polar areas, but may suffer low elevation problems of satellites, signals with poor carrier-power-to-noise-density ratio (C/N0), ionospheric scintillations, and dynamic requirements. In order to improve the navigation performance in polar areas, a deep-coupled navigation system with dual-frequency GNSS and a grid strapdown inertial navigation system (SINS) is proposed in the paper. The coverage and visibility of the GNSS constellation in polar areas are briefly reviewed firstly. Then, the joint dual-frequency vector tracking architecture of GNSS is designed with the aid of grid SINS information, which can optimize the tracking band, sharing tracking information to aid weak signal channels with strong signal channels and meet the dynamic requirement to improve the accuracy and robustness of the system. Besides this, the ionosphere-free combination of global positioning system (GPS) L1 C/A and L2 signals is used in the proposed system to further reduce ionospheric influence. Finally, the performance of the system is tested using a hardware simulator and semiphysical experiments. Experimental results indicate that the proposed system can obtain a better navigation accuracy and robust performance in polar areas.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 2075 ◽  
Author(s):  
Paweł Zalewski

The primary means for electronic position fixing currently in use in majority of contemporary merchant ships are shipborne GPS (Global Positioning System) receivers or DGPS (Differential GPS) and IALA (International Association of Lighthouse Authorities) radio beacon receivers. More advanced GNSS (Global Navigation Satellite System) receivers able to process signals from GPS, Russian GLONASS, Chinese Beidou, European Galileo, Indian IRNSS, Japan QZSS, and satellite-based augmentation systems (SBAS), are still relatively rare in maritime domain. However, it is expected that such combined or multi-system receivers will soon become more common in maritime transport and integrated with gyro, inertial, radar, laser, and optical sensors, and they will become indispensable onboard maritime autonomous surface ships (MASS). To be prepared for a malfunction of any position sensors, their state-of-the-art integrity monitoring should be developed and standardized, taking into account the specificity of MASS and e-navigation safety. The issues of existing requirements, performance standards, and future concepts of integrity monitoring for maritime position sensors are discussed and presented in this paper.


Author(s):  
André Hauschild ◽  
Markus Markgraf ◽  
Oliver Montenbruck ◽  
Horst Pfeuffer ◽  
Elie Dawidowicz ◽  
...  

The fifth Automated Transfer Vehicle was launched on 29 July 2014 with Ariane-5 flight VA 219 into orbit from Kourou, French Guiana. For the first time, the ascent of an Ariane rocket was independently tracked with a Global Navigation Satellite System (GNSS) receiver on this flight. The GNSS receiver experiment OCAM-G was mounted on the upper stage of the rocket. Its receivers tracked the trajectory of the Ariane-5 from lift-off until after the separation of the Automated Transfer Vehicle. This article introduces the design of the experiment and presents an analysis of the data gathered during the flight with respect to the GNSS tracking status, availability of navigation solution, and navigation accuracy.


2020 ◽  
Vol 12 (21) ◽  
pp. 3584
Author(s):  
Fei Ye ◽  
Yunbin Yuan ◽  
Zhiguo Deng

Errors in ultra-rapid UT1-UTC primarily affect the overall rotation of spatial datum expressed by GNSS (Global Navigation Satellite System) satellite ultra-rapid orbit. In terms of existing errors of traditional strategy, e.g., piecewise linear functions, for ultra-rapid UT1-UTC determination, and the requirement to improve the accuracy and consistency of ultra-rapid UT1-UTC, the potential to improve the performance of ultra-rapid UT1-UTC determination based on an LS (Least Square) + AR (Autoregressive) combination model is explored. In this contribution, based on the LS+AR combination model and by making joint post-processing/rapid UT1-UTC observation data, we propose a new strategy for ultra-rapid UT1-UTC determination. The performance of the new strategy is subsequently evaluated using data provided by IGS (International GNSS Services), iGMAS (international GNSS Monitoring and Assessment System), and IERS (International Earth Rotation and Reference Systems Service). Compared to the traditional strategy, the numerical results over more than 1 month show that the new strategy improved ultra-rapid UT1-UTC determination by 29–43%. The new strategy can provide a reference for GNSS data processing to improve the performance of ultra-rapid products.


2019 ◽  
Vol 13 (4) ◽  
pp. 279-289 ◽  
Author(s):  
Alexandra Avram ◽  
Volker Schwieger ◽  
Noha El Gemayel

Abstract Current trends like Autonomous Driving (AD) increase the need for a precise, reliable, and continuous position at high velocities. In both natural and man-made environments, Global Navigation Satellite System (GNSS) signals suffer challenges such as multipath, attenuation, or loss-of-lock. As Highway Assist and Highway Pilot are AD next steps, multipath knowledge is necessary for this typical user-case and kinematic situations. This paper presents a multipath performance analysis for GPS and Galileo satellites in static, slow, and high kinematic scenarios. The data is provided from car test-drives in both controlled and unrestricted, near-natural environments. The Code-Minus-Carrier (CMC) and cycle-slip implementations are validated with measurement data from consecutive days. Multipath statistical models based on satellite elevation are evaluated for the three investigated scenarios. Static models derived from the car setup measurements for GPS L1, L2 and Galileo E1 and E5b show a good agreement with a state-of-the-art model as well as the enhanced Galileo signals performance. Slow kinematic multipath results in a controlled environment showed an improvement for both navigation systems compared to the static measurements at the same place. This result is confirmed by static and slow kinematic multipath simulations with the same GNSS receiver. Post-processing analysis on highway measurements revealed a bigger multipath bias, compared to the open-sky static and slow kinematic measurement campaigns. Although less critical as urban or rural, this indicates the presence of multipath in this kind of environment as well. The impact of different parameters, including receiver architecture and Signal-to-noise ratio (SNR) are analyzed and discussed. Differential position (DGNSS) based on code is computed for each epoch and compared against GNSS/INS integrated position for all three measurement campaigns. The most significant 3D absolute error occurs where the greatest multipath envelope is found.


Sign in / Sign up

Export Citation Format

Share Document