scholarly journals IDENTIFICATION OF ROCKS AND THEIR QUARTZ CONTENT IN AMARKANTAK, INDIA USING ASTER TIR DATA

Author(s):  
S. Guha ◽  
H. Govil ◽  
M. Tripathi ◽  
M. Besoya

<p><strong>Abstract.</strong> Quartz (SiO<sub>2</sub>) abundance in rock is an important indicator of mineralization in many metal deposits and quartz detection has a great role in mineral exploration. The present study identified the quartz contained rocks in Amarkantak region, India applying thermal infrared bands (bands 10–14) of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image. After atmospheric correction, principal component analysis technique was applied on the TIR bands and the resulting principal component images were analyzed. The three optimal principal components were selected based on the spectral interaction strength and the eigenvalues of each band of the ASTER data. The result presented that extrusive igneous rock and carbonate sedimentary rocks are quartz-poor while sedimentary rocks made up of organic particles and sandstone is quartz-rich.</p>

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Kouame Yao ◽  
Biswajeet Pradhan ◽  
Mohammed Oludare Idrees

Quartz is an important mineral element and the most abundant rock-forming mineral that controls the mineralogy of a reservoir. At the surface, quartz is more stable than most other rock minerals because it is made up of interlocking silica that makes it quite resistant to mechanical weathering. Quartz abundance is an indication of mineralization in many metal deposits; therefore, identification and mapping of quartz in rocks are of great value for exploration and resource potential assessments. In this study, thermal infrared (TIR) bands of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery were used to identify quartz contained rocks in Gua Musang. First, the image was corrected for atmospheric effect and the study area subset for further processing. Thereafter, spectral transformation (principal component analysis (PCA)) was implemented on the TIR bands and the resulting principal component (PC) images were analysed. The three optimal PCs were selected using the strength of spectral interaction and the eigenvalues of each band. To discriminate between quartz-rich and quartz-poor rocks, RGB false colour composite and greyscale image of one of the PCs were analysed. The result shows that volcanogenic igneous rock and carbonate sedimentary rocks of Permian formation are quartz-poor while Triassic sedimentary rock made up of organic particles and sandstone is quartz-rich. On the contrary, the quartz content in the metamorphic rock varies across the area but is richer in quartz content than the igneous and carbonate rocks. Classification of the composite image classified using maximum likelihood (ML) supervised classification method produced overall accuracy and Kappa coefficient of 96.53%, and 0.95, respectively.


2021 ◽  
Vol 13 (24) ◽  
pp. 5073
Author(s):  
Fojun Yao ◽  
Xingwang Xu ◽  
Jianmin Yang ◽  
Xinxia Geng

Remote sensing (RS) of alteration zones and anomalies can provide information that is useful for geological prospecting and exploration. RS is an effective method for porphyry copper mineral exploration and prospecting prediction. More specifically, the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) data, which include 14 spectral channels from visible light to thermal infrared, are useful in such cases. This study uses visible-shortwave infrared and thermal infrared ASTER data together with surface material spectra from the Duolong porphyry copper ore district to construct an RS-based alteration zonation model of the deposit. In this study, an RS alteration zoning model is established based on ground-spectral alteration zoning results. The methods include PCA (Principal Component Analysis), Ratio, and Slope methods. The information obtained by each method is different. RS-based alteration zonation is developed based on the intersection of maps, resultant from the different methods for extracting information related to different minerals. The alteration zonation information extracted from ASTER RS data is consistent with geological observations. Using information from the RS-based model, we mapped the alteration minerals and zones of the Duolong ore district, thereby identifying prospecting target areas of the deposit.


2019 ◽  
Vol 11 (11) ◽  
pp. 1394 ◽  
Author(s):  
Michael Abrams ◽  
Yasushi Yamaguchi

The Advanced Spaceborne Thermal Emission and Reflection Radiometer is one of five instruments operating on the National Aeronautics and Space Administration (NASA) Terra platform. Launched in 1999, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) has been acquiring optical data for 20 years. ASTER is a joint project between Japan’s Ministry of Economy, Trade and Industry; and U.S. National Aeronautics and Space Administration. Numerous reports of geologic mapping and mineral exploration applications of ASTER data attest to the unique capabilities of the instrument. Until 2000, Landsat was the instrument of choice to provide surface composition information. Its scanners had two broadband short wave infrared (SWIR) bands and a single thermal infrared band. A single SWIR band amalgamated all diagnostic absorption features in the 2–2.5 micron wavelength region into a single band, providing no information on mineral composition. Clays, carbonates, and sulfates could only be detected as a single group. The single thermal infrared (TIR) band provided no information on silicate composition (felsic vs. mafic igneous rocks; quartz content of sedimentary rocks). Since 2000, all of these mineralogical distinctions, and more, could be accomplished due to ASTER’s unique, high spatial resolution multispectral bands: six in the SWIR and five in the TIR. The data have sufficient information to provide good results using the simplest techniques, like band ratios, or more sophisticated analyses, like machine learning. A robust archive of images facilitated use of the data for global exploration and mapping.


2006 ◽  
Vol 33 (1) ◽  
pp. 23
Author(s):  
JUSSARA ALVES PINHEIRO SOMMER ◽  
EVANDRO FERNANDES DE LIMA ◽  
DEJANIRA LUDERITZ SALDANHA ◽  
CARLOS AUGUSTO SOMMER ◽  
RONALDO PIEROSAN

The remote sensing products which are generated by orbitals sensors of middle spatial and spectral resolution and the development of new technique of digital image processing has been a auxiliary tool in the basic geological surveys. In this work was utilized images obtained from the ASTER sensor (Advanced Spaceborne Thermal Emission and Reflection Radiometer) to identify the lithologies in the Ramada Plateau area, situated closed to Vila Nova do Sul town, in the southernmost Brazil, giving emphasis to the volcanic sequence of the plateau and the encase sedimentary rocks unit. The volcanic unit represent a important part of the Neoproterozoic alkaline magmatism in the Sul-rio-grandense Shield and is interpreted as one of the volcanic cycles of the post-collisional period of Brasiliano Cycle in the southern Brazil. The selective principal component analysis technique was used in the digital image processing, because it provided the best results enhancing the existent spectral differences of the studied lithologies. In this processing were utilized only two spectral bands to reduce the data dimensionality, permitting a better interpretation of them. The first generated image (PC1) concentrate the common information of the two bands (albedo and topographic shading), while PC2 image present the differential information of the scene, representing the spectral contrast of the two original bands. From this technique was generated a color composite image from the PC’s2 images of the pair of bands 4-5 (R), 3-4 (G) and 8-9 (B). This image has shown the spectral differences between volcanic rocks of the Ramada Plateau and the sedimentary rocks of the Maricá Group and its individualization in two sub-units, mainly considering the concentration of rhyolitic dykes and sills in the north of the area. In this study was identify too in the southwestern portion of the Ramada Plateau, a dioritic intrusive body.


2019 ◽  
Vol 54 (3) ◽  
pp. 73-96
Author(s):  
Abdessamad El Atillah ◽  
Zine El Abidine El Morjani ◽  
Mustapha Souhassou

Abstract The discovery of natural resources remains the main mission of Earth observation satellites, especially in geographical areas that have a very difficult accessibility as those of the Bou Azzer–El Graara inlier (Central Anti-Atlas, Morocco). This work investigates the use of different satellite data, such as Sentinel-2A’s multispectral imagery, in order to direct the prospection program in an efficient manner, saving both time and cost. The image processing methods of Landsat 7, 8, and “Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)” (30 m/15 m) were used to create methods for Sentinel-2A images (10 m). The red, green, blue (RGB) image 12.8.2, 11/12.11/2.11/8, principal component (PC) 1,2,3(11.12.2), and other new images were the result of principal component analysis (PCA), and classification by the Iterative Self-Organizing Data Analysis Technique (ISODATA) and K-Means allowed realization of a lithological cartography as well as maps of lineaments through directional filters and the ratio of 11/12 for hydrothermal alteration zone mapping. The assembly of lithological, structural, and hydrothermal alteration data gave an idea of the mineralogy of the study area. Validity of the results was tested by comparison with the field data and the geological maps of the studied site (62% for the hydrothermal alteration zone, 81% for the lithological map, and 74% for the structural map).


2018 ◽  
Vol 10 (9) ◽  
pp. 1379 ◽  
Author(s):  
Simon Plank ◽  
Michael Nolde ◽  
Rudolf Richter ◽  
Christian Fischer ◽  
Sandro Martinis ◽  
...  

Villarrica Volcano is one of the most active volcanoes in the South Andes Volcanic Zone. This article presents the results of a monitoring of the time before and after the 3 March 2015 eruption by analyzing nine satellite images acquired by the Technology Experiment Carrier-1 (TET-1), a small experimental German Aerospace Center (DLR) satellite. An atmospheric correction of the TET-1 data is presented, based on the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Emissivity Database (GDEM) and Moderate Resolution Imaging Spectroradiometer (MODIS) water vapor data with the shortest temporal baseline to the TET-1 acquisitions. Next, the temperature, area coverage, and radiant power of the detected thermal hotspots were derived at subpixel level and compared with observations derived from MODIS and Visible Infrared Imaging Radiometer Suite (VIIRS) data. Thermal anomalies were detected nine days before the eruption. After the decrease of the radiant power following the 3 March 2015 eruption, a stronger increase of the radiant power was observed on 25 April 2015. In addition, we show that the eruption-related ash coverage of the glacier at Villarrica Volcano could clearly be detected in TET-1 imagery. Landsat-8 imagery was analyzed for comparison. The information extracted from the TET-1 thermal data is thought be used in future to support and complement ground-based observations of active volcanoes.


2018 ◽  
Vol 14 (s1) ◽  
pp. 79-88
Author(s):  
Katalin Badak-Kerti ◽  
Szabina Németh ◽  
Andreas Zitek ◽  
Ferenc Firtha

In our research marzipan samples of different sugar to almond paste ratios (1:1, 2:1, 3:1) were stored at 17 °C. Reducing sugar content was measured by analytical method, texture analysis was done by penetrometry, electric characteristics were measured by conductometry and hyperspectral images were taken 6–8 times during the 16 days of storage. For statistical analyses (discriminant analysis, principal component analysis) SPSS program was used. According to our findings with the hyperspectral analysis technique, it is possible to identify how long the samples were stored (after production), and to which class (ratio of sugar to almond) the sample belonged. The main wavelengths which gave the best discrimination results among the days of storage were between 960 and 1100 nm. The type of the marzipan was easy to distinguish with the hyperspectral data; the biggest differences were observed at 1200 and 1400 nm, which are connected to the first overtone of C-H bound, therefore correlate with the oil content. The spatial distribution of penetrometric, electric and spectral properties were also characteristic to fructose content. The fructose content of marzipan is difficult to measure by usual optical ways (polarimetry, spectroscopy), but since fructose is hygroscopic, the spatial distribution of spectral properties can be characteristic.


GeoArabia ◽  
2004 ◽  
Vol 9 (4) ◽  
pp. 77-102 ◽  
Author(s):  
Mahbub Hussain ◽  
Lameed O. Babalola ◽  
Mustafa M. Hariri

ABSTRACT The Wajid Sandstone (Ordovician-Permian) as exposed along the road-cut sections of the Abha and Khamis Mushayt areas in southwestern Saudi Arabia, is a mediun to coarse-grained, mineralogically mature quartz arenite with an average quartz content of over 95%. Monocrystalline quartz is the dominant framework grain followed by polycrystalline quartz, feldspar and micas. The non-opaque heavy mineral assemblage of the sandstone is dominated by zircon, tourmaline and rutile (ZTR). Additional heavy minerals, constituting a very minor fraction of the heavies, include epidote, hornblende, and kyanite. Statistical analysis showed significant correlations between zircon, tourmaline, rutile, epidote and hornblende. Principal component R-mode varimax factor analysis of the heavy mineral distribution data shows two strong associations: (1) tourmaline, zircon, rutile, and (2) epidote and hornblende suggesting several likely provenances including igneous, recycled sedimentary and metamorphic rocks. However, an abundance of the ZTR minerals favors a recycled sedimentary source over other possibilities. Mineralogical maturity coupled with characteristic heavy mineral associations, consistent north-directed paleoflow evidence, and the tectonic evolutionary history of the region indicate a provenance south of the study area. The most likely provenances of the lower part (Dibsiyah and Khusayyan members) of the Wajid Sandstone are the Neoproterozoic Afif, Abas, Al-Bayda, Al-Mahfid, and Al-Mukalla terranes, and older recycled sediments of the infra-Cambrian Ghabar Group in Yemen to the south. Because Neoproterozic (650-542 Ma) rocks are not widespread in Somalia, Eritrea and Ethiopia, a significant source further to the south is not likely. The dominance of the ultrastable minerals zircon, tourmaline and rutile and apparent absence of metastable, labile minerals in the heavy mineral suite preclude the exposed arc-derived oceanic terrains of the Arabian Shield in the west and north as a significant contributor of the sandstone. An abundance of finer-grained siliciclastic sequences of the same age in the north, is consistent with a northerly transport direction and the existence of a deeper basin (Tabuk Basin?) to the north. The tectonic and depositional model presented in this paper differs from the existing model that envisages sediment transportation and gradual basin filling from west to east during the Paleozoic.


Sign in / Sign up

Export Citation Format

Share Document