scholarly journals ANALYSIS OF THE ATTACKER AND DEFENDER GAN MODELS FOR THE INDOOR NAVIGATION NETWORK

Author(s):  
L. Niu ◽  
Y. Song ◽  
J. Chu ◽  
S. Li

Abstract. Evacuation research relies heavily on the efficiency analysis of the study navigation networks, and this principle also applies to indoor scenarios. One crucial type of these scenarios is the attacker and defender topic, which discusses the paralyzing and recovering operations for a specific indoor navigation network. Our approach is to apply the Generative-Adversarial-Neural network (GAN) model to optimize both reduction and increase operations for a specific indoor navigation network. In other words, the proposed model utilizes GAN both in the attacking behavior efficiency analysis and the recovering behavior efficiency analysis. To this purpose, we design a black box of training the generative model and adversarial model to construct the hidden neural networks to mimic the human selection of choosing the critical nodes in the studying navigation networks. The experiment shows that the proposed model could alleviate the selection of nodes that significantly influence network transportation efficiency. Therefore, we could apply this model to disaster responding scenarios like fire evacuation and communication network recovery operations.

2020 ◽  
Vol 15 ◽  
Author(s):  
Shulin Zhao ◽  
Ying Ju ◽  
Xiucai Ye ◽  
Jun Zhang ◽  
Shuguang Han

Background: Bioluminescence is a unique and significant phenomenon in nature. Bioluminescence is important for the lifecycle of some organisms and is valuable in biomedical research, including for gene expression analysis and bioluminescence imaging technology.In recent years, researchers have identified a number of methods for predicting bioluminescent proteins (BLPs), which have increased in accuracy, but could be further improved. Method: In this paper, we propose a new bioluminescent proteins prediction method based on a voting algorithm. We used four methods of feature extraction based on the amino acid sequence. We extracted 314 dimensional features in total from amino acid composition, physicochemical properties and k-spacer amino acid pair composition. In order to obtain the highest MCC value to establish the optimal prediction model, then used a voting algorithm to build the model.To create the best performing model, we discuss the selection of base classifiers and vote counting rules. Results: Our proposed model achieved 93.4% accuracy, 93.4% sensitivity and 91.7% specificity in the test set, which was better than any other method. We also improved a previous prediction of bioluminescent proteins in three lineages using our model building method, resulting in greatly improved accuracy.


Author(s):  
S. Elavaar Kuzhali ◽  
D. S. Suresh

For handling digital images for various applications, image denoising is considered as a fundamental pre-processing step. Diverse image denoising algorithms have been introduced in the past few decades. The main intent of this proposal is to develop an effective image denoising model on the basis of internal and external patches. This model adopts Non-local means (NLM) for performing the denoising, which uses redundant information of the image in pixel or spatial domain to reduce the noise. While performing the image denoising using NLM, “denoising an image patch using the other noisy patches within the noisy image is done for internal denoising and denoising a patch using the external clean natural patches is done for external denoising”. Here, the selection of optimal block from the entire datasets including internal noisy images and external clean natural images is decided by a new hybrid optimization algorithm. The two renowned optimization algorithms Chicken Swarm Optimization (CSO), and Dragon Fly Algorithm (DA) are merged, and the new hybrid algorithm Rooster-based Levy Updated DA (RLU-DA) is adopted. The experimental results in terms of some relevant performance measures show the promising results of the proposed model with remarkable stability and high accuracy.


Author(s):  
Weiyan Chen ◽  
Fusang Zhang ◽  
Tao Gu ◽  
Kexing Zhou ◽  
Zixuan Huo ◽  
...  

Floor plan construction has been one of the key techniques in many important applications such as indoor navigation, location-based services, and emergency rescue. Existing floor plan construction methods require expensive dedicated hardware (e.g., Lidar or depth camera), and may not work in low-visibility environments (e.g., smoke, fog or dust). In this paper, we develop a low-cost Ultra Wideband (UWB)-based system (named UWBMap) that is mounted on a mobile robot platform to construct floor plan through smoke. UWBMap leverages on low-cost and off-the-shelf UWB radar, and it is able to construct an indoor map with an accuracy comparable to Lidar (i.e., the state-of-the-art). The underpinning technique is to take advantage of the mobility of radar to form virtual antennas and gather spatial information of a target. UWBMap also eliminates both robot motion noise and environmental noise to enhance weak reflection from small objects for the robust construction process. In addition, we overcome the limited view of single radar by combining multi-view from multiple radars. Extensive experiments in different indoor environments show that UWBMap achieves a map construction with a median error of 11 cm and a 90-percentile error of 26 cm, and it operates effectively in indoor scenarios with glass wall and dense smoke.


2019 ◽  
Vol 2 (4) ◽  
pp. 530
Author(s):  
Amr Hassan Yassin ◽  
Hany Hamdy Hussien

Due to the exponential growth of E-Business and computing capabilities over the web for a pay-for-use groundwork, the risk factors regarding security issues also increase rapidly. As the usage increases, it becomes very difficult to identify malicious attacks since the attack patterns change. Therefore, host machines in the network must continually be monitored for intrusions since they are the final endpoint of any network. The purpose of this work is to introduce a generalized neural network model that has the ability to detect network intrusions. Two recent heuristic algorithms inspired by the behavior of natural phenomena, namely, the particle swarm optimization (PSO) and gravitational search (GSA) algorithms are introduced. These algorithms are combined together to train a feed forward neural network (FNN) for the purpose of utilizing the effectiveness of these algorithms to reduce the problems of getting stuck in local minima and the time-consuming convergence rate. Dimension reduction focuses on using information obtained from NSL-KDD Cup 99 data set for the selection of some features to discover the type of attacks. Detecting the network attacks and the performance of the proposed model are evaluated under different patterns of network data.


2018 ◽  
Vol 11 (1) ◽  
pp. 144-157 ◽  
Author(s):  
Simon von Danwitz

Purpose The management of major inter-firm projects requires a coherent, holistic governance framework to be effective. However, most existing models of project governance are limited to a narrow selection of contractual, structural or procedural aspects, and further neglect contextual factors, such as key characteristics of a project and its partners. The paper aims to discuss these issues. Design/methodology/approach This conceptual paper proposes an integrative analytical model of inter-firm project governance, building upon contingency theory and drawing from established constructs rooted in organization theory. Findings The paper aims to integrate two largely distinct streams of research and synthesize the respective constitutive dimensions of project governance into a coherent conceptual model. Further, interrelationships with contextual factors, such as project-related and partner-related characteristics, and project performance are discussed. Originality/value The proposed model purposefully merges two complementary streams of project governance research. As the model further provides clear contextual factors, it strengthens an emerging stream of project research by systematically examining external influences of project organizing. Future research may utilize this model and the suggested operationalization for each of the constructs as a basis to empirically investigate the design and effectiveness of governance regimes of major projects.


Author(s):  
Tapas Kumar Biswas ◽  
Željko Stević ◽  
Prasenjit Chatterjee ◽  
Morteza Yazdani

In this chapter, a holistic model based on a newly developed combined compromise solution (CoCoSo) and criteria importance through intercriteria correlation (CRITIC) method for selection of battery-operated electric vehicles (BEVs) has been propounded. A sensitivity analysis has been performed to verify the robustness of the proposed model. Performance of the proposed model has also been compared with some of the popular MCDM methods. It is observed that the model has the competency of precisely ranking the BEV alternatives for the considered case study and can be applied to other sustainability assessment problems.


Author(s):  
Ikram Khatrouch ◽  
Lyes Kermad ◽  
Abderrahman el Mhamedi ◽  
Younes Boujelbene

Human resources management is essential to any health care system. This paper proposes an assessment model to help the decision maker in the selection of an optimal team. In the proposed model, AHP method is applied to identify the weights of each criterion in the decision model. ELECTRE I method is used to obtain the best team that satisfies most of the decision maker preferences. We test the effectiveness of the model on the real data collected from the ‘Habib Bourguiba' Hospital in Tunisia.


2013 ◽  
Vol 10 (2) ◽  
pp. 667-684 ◽  
Author(s):  
Jianfeng Wang ◽  
Hua Ma ◽  
Qiang Tang ◽  
Jin Li ◽  
Hui Zhu ◽  
...  

As cloud computing becomes prevalent, more and more sensitive data is being centralized into the cloud by users. To maintain the confidentiality of sensitive user data against untrusted servers, the data should be encrypted before they are uploaded. However, this raises a new challenge for performing search over the encrypted data efficiently. Although the existing searchable encryption schemes allow a user to search the encrypted data with confidentiality, these solutions cannot support the verifiability of searching result. We argue that a cloud server may be selfish in order to save its computation ability or bandwidth. For example, it may execute only a fraction of the search and returns part of the searching result. In this paper, we propose a new verifiable fuzzy keyword search scheme based on the symbol-tree which not only supports the fuzzy keyword search, but also enjoys the verifiability of the searching result. Through rigorous security and efficiency analysis, we show that our proposed scheme is secure under the proposed model, while correctly and efficiently realizing the verifiable fuzzy keyword search. The extensive experimental results demonstrate the efficiency of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document