scholarly journals ANALYSIS OF RELATIONSHIP BETWEEN URBAN HEAT ISLAND EFFECT AND LAND USE/COVER TYPE USING LANDSAT 7 ETM+ AND LANDSAT 8 OLI IMAGES

Author(s):  
N. Aslan ◽  
D. Koc-San

The main objectives of this study are (i) to calculate Land Surface Temperature (LST) from Landsat imageries, (ii) to determine the UHI effects from Landsat 7 ETM+ (June 5, 2001) and Landsat 8 OLI (June 17, 2014) imageries, (iii) to examine the relationship between LST and different Land Use/Land Cover (LU/LC) types for the years 2001 and 2014. The study is implemented in the central districts of Antalya. Initially, the brightness temperatures are retrieved and the LST values are calculated from Landsat thermal images. Then, the LU/LC maps are created from Landsat pan-sharpened images using Random Forest (RF) classifier. Normalized Difference Vegetation Index (NDVI) image, ASTER Global Digital Elevation Model (GDEM) and DMSP_OLS nighttime lights data are used as auxiliary data during the classification procedure. Finally, UHI effect is determined and the LST values are compared with LU/LC classes. The overall accuracies of RF classification results were computed higher than 88 % for both Landsat images. During 13-year time interval, it was observed that the urban and industrial areas were increased significantly. Maximum LST values were detected for dry agriculture, urban, and bareland classes, while minimum LST values were detected for vegetation and irrigated agriculture classes. The UHI effect was computed as 5.6 °C for 2001 and 6.8 °C for 2014. The validity of the study results were assessed using MODIS/Terra LST and Emissivity data and it was found that there are high correlation between Landsat LST and MODIS LST data (r<sup>2</sup> = 0.7 and r<sup>2</sup> = 0.9 for 2001 and 2014, respectively).

Author(s):  
N. Aslan ◽  
D. Koc-San

The main objectives of this study are (i) to calculate Land Surface Temperature (LST) from Landsat imageries, (ii) to determine the UHI effects from Landsat 7 ETM+ (June 5, 2001) and Landsat 8 OLI (June 17, 2014) imageries, (iii) to examine the relationship between LST and different Land Use/Land Cover (LU/LC) types for the years 2001 and 2014. The study is implemented in the central districts of Antalya. Initially, the brightness temperatures are retrieved and the LST values are calculated from Landsat thermal images. Then, the LU/LC maps are created from Landsat pan-sharpened images using Random Forest (RF) classifier. Normalized Difference Vegetation Index (NDVI) image, ASTER Global Digital Elevation Model (GDEM) and DMSP_OLS nighttime lights data are used as auxiliary data during the classification procedure. Finally, UHI effect is determined and the LST values are compared with LU/LC classes. The overall accuracies of RF classification results were computed higher than 88&thinsp;% for both Landsat images. During 13-year time interval, it was observed that the urban and industrial areas were increased significantly. Maximum LST values were detected for dry agriculture, urban, and bareland classes, while minimum LST values were detected for vegetation and irrigated agriculture classes. The UHI effect was computed as 5.6&thinsp;&deg;C for 2001 and 6.8&thinsp;&deg;C for 2014. The validity of the study results were assessed using MODIS/Terra LST and Emissivity data and it was found that there are high correlation between Landsat LST and MODIS LST data (r<sup>2</sup>&thinsp;=&thinsp;0.7 and r<sup>2</sup>&thinsp;=&thinsp;0.9 for 2001 and 2014, respectively).


2020 ◽  
Vol 12 (2) ◽  
pp. 291 ◽  
Author(s):  
Giuseppe Mancino ◽  
Agostino Ferrara ◽  
Antonietta Padula ◽  
Angelo Nolè

Landsat 8 is the most recent generation of Landsat satellite missions that provides remote sensing imagery for earth observation. The Landsat 7 Enhanced Thematic Mapper Plus (ETM+) images, together with Landsat-8 Operational Land Imager (OLI) and Thermal Infrared sensor (TIRS) represent fundamental tools for earth observation due to the optimal combination of the radiometric and geometric images resolution provided by these sensors. However, there are substantial differences between the information provided by Landsat 7 and Landsat 8. In order to perform a multi-temporal analysis, a cross-comparison between image from different Landsat satellites is required. The present study is based on the evaluation of specific intercalibration functions for the standardization of main vegetation indices calculated from the two Landsat generation images, with respect to main land use types. The NDVI (Normalized Difference Vegetation Index), NDWI (Normalized Difference Water Index), LSWI (Land Surface Water Index), NBR (Normalized Burn Ratio), VIgreen (Green Vegetation Index), SAVI (Soil Adjusted Vegetation Index), and EVI (Enhanced Vegetation Index) have been derived from August 2017 ETM+ and OLI images (path: 188; row: 32) for the study area (Basilicata Region, located in the southern part of Italy) selected as a highly representative of Mediterranean environment. Main results show slight differences in the values of average reflectance for each band: OLI shows higher values in the near-infrared (NIR) wavelength for all the land use types, while in the short-wave infrared (SWIR) the ETM+ shows higher reflectance values. High correlation coefficients between different indices (in particular NDVI and NDWI) show that ETM+ and OLI can be used as complementary data. The best correlation in terms of cross-comparison was found for NDVI, NDWI, SAVI, and EVI indices; while according to land use classes, statistically significant differences were found for almost all the considered indices calculated with the two sensors.


2020 ◽  
Vol 1 (135) ◽  
pp. 67-78
Author(s):  
Ismael Abbas Hurat

This paper analyzes the effects of urban density, vegetation cover, and water body on thermal islands measured by land surface temperature in Al Anbar province, Iraq using multi-temporal Landsat images. Images from Landsat 7 ETM and Landsat 8 OLI for the years 2000, 2014, and 2018 were collected, pre-processed, and anal yzed. The results suggested that the strongest correlation was found between the Normalized Difference Built-up Index (NDBI) and the surface temperature. The correlation between the Normalized Difference Vegetation Index (NDVI) and the surface temperature was slightly weaker compared to that of NDBI. However, the weakest correlation was found between the Normalized Difference Water Index (NDWI) and the temperature. The results obtained in this research may help the decision makers to take actions to reduce the effects of thermal islands by looking at the details in the produced maps and the analyzed values of these spectral indices.


Author(s):  
A. Baloloy ◽  
R. R. Sta. Ana ◽  
J. A. Cruz ◽  
A. C. Blanco ◽  
N. V. Lubrica ◽  
...  

Abstract. Urbanization can be observed through the occurrence of land-use changes as more land is being transformed and developed for urban use. One of the Philippine cities with high rate of urbanization is Baguio City, known for having a subtropical highland climate. To understand the spatiotemporal relationship between urbanization and temperature, this study aims to analyze the correlation of urban extent with land surface and air temperature in Baguio City using satellite-based built-up extents, land surface temperature (LST) maps, and weather station-recorded air temperature data. Built-up extent layers were derived from three satellite images: Landsat, RapidEye and PlanetScope. Land-use land cover (LULC) maps were generated from Landsat images using biophysical indices such as Normalized Difference Vegetation Index (NDVI) and Normalized Difference Built-up Index (NDBI); while RapidEye and PlanetScope built-up extent maps were generated by applying the visible green-based built-up index (VgNIR-BI). Mean LST values from 1988 to 2018 during the dry and wet seasons were calculated from the Landsat-retrieved surface temperature layers. The result of the study shows that the increase in the built-up extent significantly intensified the LST during the dry season which was observed in all satellite data-derived built-up maps: RapidEye+PlanetScope (2012–2018; r = 0.88), Landsat 8 (2012–2018; r = 0.63) and Landsat 5,7,8 (1988–2018; r = 0.61). The main LST hotspots were detected inside the Central Business District where it expanded gradually from year 1998 (43 ha) to 2011 (83 ha), but have increased extensively within the years 2014 to 2019 (305 ha). On average, 98.5% of the hotspots detected from 1995 to 2019 are within the equivalent built-up area.


2021 ◽  
Vol 46 (3) ◽  
pp. 383
Author(s):  
Donny Dhonanto ◽  
Nurul Puspita Palupi ◽  
Ghaisani Salsabila

 Transformation of land-use cause forest area decrease that will affect microclimate (weather tends heat), thus hotspot may possible to scattered in that area and raise the transformation of surface temperature. The objective of this research is to determine the indication of surface temperature in the East Kutai District. The advantage of this research is to give information about hotspot area distribution based on land use and relate between hotspots with surface temperature increase so it is supposed to be one of the consider to transform land use in East Kutai District. This research was held from April until May 2019 at the Laboratory of Carthography and Geographic Information System, Faculty of Agriculture, Mulawarman University. This research using calculation of Land Surface Temperature (LST) value to determine the transformation of surface temperature in East Kutai District by data analysis from Landsat-8 OLI/TIRS satellite. Hotspot area distribution adapted to map of land-use so we found the source of the hotspot. The result of the research shows there are about 6 hotspots in land-use of plantation in 2017 and the increase of the surface temperature is not static cause by depending of rainfall in East Kutai District. Increasing of surface temperature in East Kutai District in October 2013 become 22.35 oC (for minimum temperature), whereas in May 2017 become 37.24 oC (for maximum temperature). 


2019 ◽  
Vol 11 (24) ◽  
pp. 7056 ◽  
Author(s):  
Jae-Ik Kim ◽  
Myung-Jin Jun ◽  
Chang-Hwan Yeo ◽  
Ki-Hyun Kwon ◽  
Jun Yong Hyun

This study investigated how changes in land surface temperature (LST) during 2004 and 2014 were attributable to zoning-based land use type in Seoul in association with the building coverage ratio (BCR), floor area ratio (FAR), and a normalized difference vegetation index (NDVI). We retrieved LSTs and NDVI data from satellite images, Landsat TM 5 for 2004 and Landsat 8 TIRS for 2014 and combined them with parcel-based land use information, which contained data on BCR, FAR, and zoning-based land use type. The descriptive analysis results showed a rise in LST for the low- and medium-density residential land, whereas significant LST decreases were found in high-density residential, semi-residential, and commercial areas over the time period. Statistical results further supported these findings, yielding statistically significant negative coefficient values for all interaction variables between higher-density land use types and a year-based dummy variable. The findings appear to be related to residential densification involving the provision of more high-rise apartment complexes and government efforts to secure more parks and green spaces through urban redevelopment and renewal projects.


Author(s):  
E. O. Makinde ◽  
A. D. Obigha

The Landsat system has contributed significantly to the understanding of the Earth observation for over forty years. Since May 2013, data from Landsat 8 has been available online for download, with substantial differences from its predecessors, having an extended number of spectral bands and narrower bandwidths. The objectives of this research were majorly to carry out a cross comparison analysis between vegetation indices derived from Landsat 7 Enhanced Thematic Mapper Plus (ETM+) and Landsat 8 Operational Land Imager (OLI) and also performed statistical analysis on the results derived from the vegetation indices. Also, this research carried out a change detection on four land cover classes present within the study area, as well as projected the land cover for year 2030. The methods applied in this research include, carrying out image classification on the Landsat imageries acquired between 1984 – 2016 to ascertain the changes in the land cover types, calculated the mean values of differenced vegetation indices derived from the four land covers between Landsat 7 ETM+ and Landsat 8 OLI. Statistical analysis involving regression and correlation analysis were also carried out on the vegetation indices derived between the two sensors, as well as scatter plot diagrams with linear regression equation and coefficients of determination (R2). The results showed no noticeable differences between Landsat 7 and Landsat 8 sensors, which demonstrates high similarities. This was observed because Global Environmental Monitoring Index (GEMI), Improved Modified Triangular Vegetation Index 2 (MTVI2), Normalized Burn Ratio (NBR), Normalized Difference Vegetation Index (NDVI), Modified Normalized Difference Water Index (MNDWI), Leaf Area Index (LAI) and Land Surface Water Index (LSWI) had smaller standard deviations. However, Renormalized Difference Vegetation Index (RDVI), Anthocyanin Reflectance Index 1 (ARI1) and Anthocyanin Reflectance Index 2 (ARI2) performed relatively poorly because their standard deviations were high. the correlation analysis of the vegetation indices that both sensors had a very high linear correlation coefficient with R2 greater than 0.99. It was concluded from this research that Landsat 7 ETM+ and Landsat 8 OLI can be used as complimentary data.


Author(s):  
B. İşler ◽  
Z. Aslan

Abstract. The increase in the world population and the migration of people from rural to urban areas causes an increase in artificial surfaces and causes many negative effects on the ecosystem, regional climate variations and global diversity. Nowadays, as the effects of climate change are felt more and more, it has gained importance in researches on this subject. Therefore, the estimation of the change in the vegetation density for the coming years and the determination of the land use / land cover (LULC) change in cities are very essential for urban planning. In this study, the effects of regional urbanization on vegetation are examined by using satellite data and atmospheric variables. In the vegetation analysis, multi-time index values obtained from TERRA-MODIS satellite, EVI (Enhanced Vegetation Index) and LST (Land Surface Temperature) were taken into account between the years of 2005 and 2018 in Alanya, Turkey. Temperature and precipitation were selected as the atmospheric variables and expected variations in EVI value until 2030 were estimated. In the study employed a wavelet-transformed artificial neural network (WANN) model to generate long-term (12-year) EVI forecasts using LST, temperature and precipitation. The relationship between land use / land cover and urbanization is investigated with NDBI (Normalized Difference Built-up Index) data obtained from the Landsat 8 OLI / TIRS satellite sensor. The simulation results show that The EVI value, which was 0.30 in 2018, will decrease to 0.25 in 2030.


2021 ◽  
Vol 52 (4) ◽  
pp. 793-801
Author(s):  
Al-Jbouri & Al-Timimi

Agriculture is the most important and most dependent economic activity and influenced by climatic conditions as the climate elements represented by solar radiation, temperature, wind and relative humidity. Therefore, is necessary that analyze and understand the relationship between climate and agriculture. The aim of this study to assessment the relationship between land surface temperature (LST) and normalized difference vegetation index (NDVI) for three regions of Diyala Governorate in Iraq (Al Muqdadya, Baladrooz, and Baquba) by through using of remote sensing techniques and geographic information system (GIS).The Normalized difference vegetation index NDVI and land surface temperature (LST) were used in two of the Landsat-5 ETM + and Landsat-8 OLI satellite imagery during the years 1999 and 2019.  The results showed that increased in NDVI and decreased in LST for 2019, while for 1999 increased in LST and decreased in NDVI for the three regions. Finally, the regression was used to obtain that correlation between LST and NDVI. It was concluded that the correlation coefficient between NDVI and LST is negative, where the strongest correlation was 0.76 for Baquba and weakest correlation was 0.55 for Muqdadyia.


2018 ◽  
Vol 19 (2) ◽  
pp. 145 ◽  
Author(s):  
Widya Ningrum ◽  
Ida Narulita

ABSTRACTThe rapid population growth and development of infrastructure in the Bandung basin has triggered an uncontrolled land use changes. The changes of land use will impact on land surface temperature distribution. Finally, these changes will give influence on climate. Land surface temperature is one of the important climatic elements in the energy balance. Changes in land surface temperature variations will potentially change other elements of the climate. The purpose of this paper is to obtain and to analyze the changes of surface temperature distribution in Bandung basin using multi temporal satellite data processing that is Landsat 5 and Landsat 8 in 2004, 2009 and 2014. Near Infrared Channel (Near Infrared/NIR) and visible wave channels (Visible band) have used to obtain the value Normalized Difference Vegetation Index/NDVI index and Albedo. Land and vegetation emissivity value and thermal band have used to determine land surface temperature. The results showed that the surface temperature distribution of Bandung basin has been changes characterized by the presence of two hotspot characters i.e. hot areas in urban and hot areas in non-urban area. The area is characterized by decreasing vegetation index values, increasing albedo values and increasing on surface temperature.  Land Surface Temperatures average value increased by 1.3°C. Land surface temperature tends to rise supposed as a result of changes in vegetated area into open area and the build area  Keywords: land surface temperature, normalized difference vegetation index, albedoABSTRAKPesatnya pertumbuhan penduduk dan perkembangan infrastruktur di cekungan Bandung telah memicu perubahan tutupan lahan yang tidak terkendali. Perubahan tutupan lahan akan mempengaruhi distribusi suhu permukaan. Hal tersebut pada akhirnya nanti akan mempengaruhi iklim. Suhu permukaan merupakan salah satu unsur iklim yang penting dalam neraca energi. Perubahan variasi suhu permukaan berpotensi mengubah unsur unsur iklim yang lainnya. Tujuan makalah ini adalah untuk mengetahui dan menganalisis perubahan distribusi suhu permukaan di cekungan Bandung melalui pengolahan data satelit multi waktu yaitu Landsat 5 dan Landsat 8 tahun 2004, 2009, 2014 dan 2016. Kanal Inframerah Dekat (Near Infrared/NIR) dan kanal gelombang tampak (Visible band) digunakan untuk memperoleh nilai Indeks Kehijauan Vegetasi (Normalized Difference Vegetation Index/NDVI) dan Albedo. Nilai emisivitas dari tanah dan vegetasi serta Band termal digunakan untuk menentukan nilai Suhu Permukaan Tanah.Hasil penelitian menunjukkan bahwa di cekungan Bandung telah terjadi perubahan distribusi suhu permukaan yang dicirikan oleh adanya dua karakter hotspot yaitu daerah panas di daerah urban dan daerah panas di daerah non-urban. Daerah tersebut dicirikan menurunnya nilai indeks vegetasi, menurunnya nilai albedo dan meningkatnya nilai suhu permukaan tanah. Nilai rataan Suhu Permukaan Tanah tahun 2005 - 2014 meningkat sebesar 1.3°C. Kecenderungan naik ini diduga sebagai akibat adanya perubahan tutupan lahan bervegetasi menjadi daerah yang lebih terbuka dan daerah terbangun.Kata kunci: suhu permukaan, indeks kehijauan vegetasi, albedo 


Sign in / Sign up

Export Citation Format

Share Document