scholarly journals Damage functions for climate-related hazards: unification and uncertainty analysis

2016 ◽  
Vol 16 (5) ◽  
pp. 1189-1203 ◽  
Author(s):  
Boris F. Prahl ◽  
Diego Rybski ◽  
Markus Boettle ◽  
Jürgen P. Kropp

Abstract. Most climate change impacts manifest in the form of natural hazards. Damage assessment typically relies on damage functions that translate the magnitude of extreme events to a quantifiable damage. In practice, the availability of damage functions is limited due to a lack of data sources and a lack of understanding of damage processes. The study of the characteristics of damage functions for different hazards could strengthen the theoretical foundation of damage functions and support their development and validation. Accordingly, we investigate analogies of damage functions for coastal flooding and for wind storms and identify a unified approach. This approach has general applicability for granular portfolios and may also be applied, for example, to heat-related mortality. Moreover, the unification enables the transfer of methodology between hazards and a consistent treatment of uncertainty. This is demonstrated by a sensitivity analysis on the basis of two simple case studies (for coastal flood and storm damage). The analysis reveals the relevance of the various uncertainty sources at varying hazard magnitude and on both the microscale and the macroscale level. Main findings are the dominance of uncertainty from the hazard magnitude and the persistent behaviour of intrinsic uncertainties on both scale levels. Our results shed light on the general role of uncertainties and provide useful insight for the application of the unified approach.

2015 ◽  
Vol 3 (11) ◽  
pp. 6845-6881 ◽  
Author(s):  
B. F. Prahl ◽  
D. Rybski ◽  
M. Boettle ◽  
J. P. Kropp

Abstract. Most climate change impacts manifest in the form of natural hazards. For example, sea-level rise and changes in storm climatology are expected to increase the frequency and magnitude of flooding events. In practice there is a need for comprehensive damage assessment at an intermediate level of complexity. Answering this need, we reveal the common grounds of macroscale damage functions employed in storm damage, coastal-flood damage, and heat mortality assessment. The universal approach offers both bottom-up and top-down damage evaluation, employing either an explicit or an implicit portfolio description. Putting emphasis on the treatment of data uncertainties, we perform a sensitivity analysis across different scales. We find that the behaviour of intrinsic uncertainties on the microscale level (i.e. single item) does still persist on the macroscale level (i.e. portfolio). Furthermore, the analysis of uncertainties can reveal their specific relevance, allowing for simplification of the modelling chain. Our results shed light on the role of uncertainties and provide useful insight for the application of a unified damage function.


Author(s):  
R. N. Butlin

SynopsisThe main pollutants affecting materials are sulphur dioxide and sulphates, nitrogen oxides and nitrates, chlorides, carbon dioxide and ozone. In marine environments it is important to separate the effects of anthropogenic pollutants from marine sources of the same substances. The effects of paniculate matter, especially from diesel vehicle emissions is of increasing significance.In buildings containing books, historical artefacts or other works of art indoor pollutants may cause significant degradation. These pollutants may either be lower concentrations of pollutants originating outdoors or other substances generated from synthetic materials, paints, varnishes and display cases as well as from combustion for heating.The materials most sensitive to pollutants are calcareous building stones and ferrous metals. Manifestations of damage include losses of mass, changes in porosity, discoloration and embrittlement. In the case of stone it is difficult to (1) dissociate the effects of historical concentrations of pollution from current ones and (2) to establish background rates of erosion or decay in the absence of pollutants.Damage to materials in polluted atmospheres can be attributed to dry or wet deposition of pollutants, or dissolution in rainfall in the case of stone. Estimates of the contributions of the different mechanisms of decay have been made in programmes in the U.S.A. and the U.K.To obtain estimates of the economic cost of damage from acid deposition it is necessary to know how decay rates are related quantitatively to pollutants and meteorological parameters (damage functions), and the distribution of materials exposed in buildings and in geographical areas. There are few damage functions available and those in existence lack general applicability. There is. therefore, much importance attached to national and international exposure programmes that have been established to assess the responses of a range of materials to different environments. Such work is also of interest in predicting the potential effects of climatic changes on materials.Methodologies have been developed to enable estimates of economic costs of damage to be made. These are being refined with better data on rates of decay obtained from mathematical models and from exposure programmes. The concept of target loads for damage, originally devised for the natural environment, is being introduced to help assess the action needed to reduce degradation of sensitive materials and buildings.


2014 ◽  
Vol 52 (2) ◽  
pp. 559-562

Warwick McKibbin of the Australian National University and the Brookings Institution reviews “Climate Economics: The State of the Art”, by Frank Ackerman and Elizabeth A. Stanton. The Econlit abstract of this book begins: “Reviews the state of the art in climate economics and its background sciences. Discusses climate science for economists; damage functions and climate impacts; climate change impacts on natural systems; climate change impacts on human systems; climate economics before and after the Stern Review; uncertainty; public goods and public policy; economics and the climate policy debate; technologies for mitigation; the economics of mitigation; and adaptation. Ackerman and Stanton are Senior Economists at Synapse Energy Economics, Cambridge, Mass.”


2020 ◽  
Author(s):  
Andreas Huber ◽  
Simon Lumassegger ◽  
David Leidinger ◽  
Stefan Achleitner ◽  
Herbert Formayer ◽  
...  

<p>In recent years the topic of flash flooding away from rivers and permanent watercourses has attracted increasing attention from the scientific community, public authorities and affected parts of the general public. Not only urban areas with a high proportion of sealed surfaces, but also rural areas have been adversely affected by pluvial flash floods (PFFs) or surface water floods (SWFs) in the recent past. Empirical evidence suggests that amongst others pre-Alpine areas (e.g. in Austria, Germany, Switzerland, ...) might be especially susceptible to this type of flooding. From a water-management perspective knowledge about potentially endangered areas is important for involved stake-holders as a basis for informed decisions on a variety of topics ranging from protection of existing infrastructure and adaptation of current land use practices to future settlement development. In the light of changing climatic conditions also information on projected future developments is highly desirable. With respect to the latter, an increasing number of datasets from national and pan-European climate-services has become publicly available. Also a growing proportion of two-dimensional hydrodynamic models supports direct rainfall as a boundary condition, thus addressing the special requirements for modeling of PFFs/SWFs.</p><p>We utilize different two-dimensional hydrodynamic models (unstructured-mesh, raster-based) in combination with an event-based hydrological approach to simulate the spatial distribution of surface runoff in response to heavy precipitation events for present conditions and under projected future conditions for small rural areas (< 2km²) in Upper Austria. The general applicability of the used modeling approach is demonstrated. However, also a number of remaining challenges related to the limited quantity and quality of observational data for model calibration and the definition of representative future scenarios is identified and discussed.</p>


2014 ◽  
Vol 2 (9) ◽  
pp. 5835-5887
Author(s):  
B. F. Prahl ◽  
D. Rybski ◽  
O. Burghoff ◽  
J. P. Kropp

Abstract. Winter storms are the most costly natural hazard for European residential property. We compare four distinct storm damage functions with respect to their forecast accuracy and variability, with particular regard to the most severe winter storms. The analysis focuses on daily loss estimates under differing spatial aggregation, ranging from district to country level. We discuss the broad and heavily skewed distribution of insured losses posing difficulties on both the calibration and the evaluation of damage functions. From theoretical considerations, we provide a synthesis between the frequently discussed cubic damage-wind relationship and recent studies that report much steeper damage functions for European winter storms. The performance of the storm loss models is evaluated for two wind data sources, direct observation by the German Weather Service and ERA Interim reanalysis data. While the choice of wind data indicates little impact for the evaluation of German storm loss, local variability exhibits dependence between model and data choices. Based on our analysis, we favour the application of two probabilistic approaches which fare best in terms of the accuracy of their expected value and overall exhibit the lowest amount of variability.


2014 ◽  
Vol 14 (12) ◽  
pp. 3151-3168 ◽  
Author(s):  
F. F. Hattermann ◽  
S. Huang ◽  
O. Burghoff ◽  
W. Willems ◽  
H. Österle ◽  
...  

Abstract. The aim of the study is to analyze and discuss possible climate change impacts on flood damages in Germany. The study was initiated and supported by the German insurance sector whereby the main goal was to identify general climate-related trends in flood hazard and damages and to explore sensitivity of results to climate scenario uncertainty. The study makes use of climate scenarios regionalized for the main river basins in Germany. A hydrological model (SWIM) that had been calibrated and validated for the main river gauges, was applied to transform these scenarios into discharge for more than 5000 river reaches. Extreme value distribution has been fitted to the time series of river discharge to derive the flood frequency statistics. The hydrological results for each river reach have been linked using the flood statistics to related damage functions provided by the German Insurance Association, considering damages on buildings and small enterprises. The result is that, under the specific scenario conditions, a considerable increase in flood related losses can be expected in Germany in future, warmer, climate.


2015 ◽  
Vol 15 (4) ◽  
pp. 769-788 ◽  
Author(s):  
B. F. Prahl ◽  
D. Rybski ◽  
O. Burghoff ◽  
J. P. Kropp

Abstract. Winter storms are the most costly natural hazard for European residential property. We compare four distinct storm damage functions with respect to their forecast accuracy and variability, with particular regard to the most severe winter storms. The analysis focuses on daily loss estimates under differing spatial aggregation, ranging from district to country level. We discuss the broad and heavily skewed distribution of insured losses posing difficulties for both the calibration and the evaluation of damage functions. From theoretical considerations, we provide a synthesis between the frequently discussed cubic wind–damage relationship and recent studies that report much steeper damage functions for European winter storms. The performance of the storm loss models is evaluated for two sources of wind gust data, direct observations by the German Weather Service and ERA-Interim reanalysis data. While the choice of gust data has little impact on the evaluation of German storm loss, spatially resolved coefficients of variation reveal dependence between model and data choice. The comparison shows that the probabilistic models by Heneka et al. (2006) and Prahl et al. (2012) both provide accurate loss predictions for moderate to extreme losses, with generally small coefficients of variation. We favour the latter model in terms of model applicability. Application of the versatile deterministic model by Klawa and Ulbrich (2003) should be restricted to extreme loss, for which it shows the least bias and errors comparable to the probabilistic model by Prahl et al. (2012).


2019 ◽  
Vol 11 (11) ◽  
pp. 3192 ◽  
Author(s):  
Eric Kemp-Benedict ◽  
Jonathan Lamontagne ◽  
Timothy Laing ◽  
Crystal Drakes

This paper constructs a model of climate-related damage for small island developing states (SIDS). We focus on the loss of private productive capital stocks through extreme climate events. In contrast to most economic analyses of climate impacts, which assume temperature-dependent damage functions, we draw on the engineering literature to allow for a greater or lesser degree of anticipation of climate change when designing capital stocks and balancing current adaptation expenditure against future loss and damage. We apply the model to tropical storm damage in the small island developing state of Barbados and show how anticipatory behavior changes the damage to infrastructure for the same degree of climate change. Thus, in the model, damage depends on behavior as well as climate variables.


2015 ◽  
Vol 54 (7) ◽  
pp. 1430-1448 ◽  
Author(s):  
Patrick Conry ◽  
Ashish Sharma ◽  
Mark J. Potosnak ◽  
Laura S. Leo ◽  
Edward Bensman ◽  
...  

AbstractThe interaction of global climate change and urban heat islands (UHI) is expected to have far-reaching impacts on the sustainability of the world’s rapidly growing urban population centers. Given that a wide range of spatiotemporal scales contributed by meteorological forcing and complex surface heterogeneity complicates UHI, a multimodel nested approach is used in this paper to study climate-change impacts on the Chicago, Illinois, UHI, covering a range of relevant scales. One-way dynamical downscaling is used with a model chain consisting of global climate (Community Atmosphere Model), regional climate (Weather Research and Forecasting Model), and microscale (“ENVI-met”) models. Nested mesoscale and microscale models are evaluated against the present-day observations (including a dedicated urban miniature field study), and the results favorably demonstrate the fidelity of the downscaling techniques that were used. A simple building-energy model is developed and used in conjunction with microscale-model output to calculate future energy demands for a building, and a substantial increase (as much as 26% during daytime) is noted for future (~2080) climate. Although winds and lake-breeze circulation for future climate are favorable for reducing energy usage by 7%, the benefits are outweighed by such factors as exacerbated UHI and air temperature. An adverse change in human-comfort indicators is also noted in the future climate, with 92% of the population experiencing thermal discomfort. The model chain that was used has general applicability for evaluating climate-change impacts on city centers and, hence, for urban-sustainability studies.


Author(s):  
Eric Kemp-Benedict ◽  
Jonathan Lamontagne ◽  
Timothy Laing ◽  
Crystal Drakes

This paper constructs a model of climate-related damage for small island developing states (SIDS). We focus on the loss of private productive capital stocks through extreme climate events. In contrast to most economic analyses of climate impacts, which assume temperature-dependent damage functions, we draw on the engineering literature to allow for a greater or lesser degree of anticipation of climate change when designing capital stocks and balancing current adaptation expenditure against future loss & damage. We apply the model to tropical storm damage in the small island developing state of Barbados and show how anticipatory behavior changes the damage to infrastructure for the same degree of climate change. Thus, in the model, damage depends on behavior as well as climate variables.


Sign in / Sign up

Export Citation Format

Share Document