scholarly journals A high-resolution spatial ass essment of the impacts of drought variability on vegetation activity in Spain from 1981 to 2015

2018 ◽  
Author(s):  
Sergio M. Vicente-Serrano ◽  
Cesar Azorin-Molina ◽  
Marina Peña-Gallardo ◽  
Miquel Tomas-Burguera ◽  
Fernando Domínguez-Castro ◽  
...  

Abstract. Drought is a major driver of vegetation activity in Spain, with significant impacts on crop yield, forest growth, and the occurrence of forest fires. Nonetheless, the sensitivity of vegetation to drought conditions differs largely amongst vegetation types and climates. We used a high-resolution (1.1 km) spatial dataset of the Normalized Difference Vegetation Index (NDVI) for the whole Spain spanning the period from 1981 to 2015, combined with a another newly developed dataset of the Standardized Precipitation Evapotranspiration Index (SPEI) to assess the sensitivity of vegetation types to drought across Spain. In specific, this study explores the drought time scales at which vegetation activity shows its highest response to drought severity at different moments of the year. Results demonstrate that − over large areas of Spain − vegetation activity is controlled largely by the interannual variability of drought. More than 90 % of the land areas exhibited statistically significant positive correlations between the NDVI and the SPEI during dry summers (JJA). Nevertheless, there are some considerable spatio-temporal variations, which can be linked to differences in land cover and aridity conditions. In comparison to other climatic regions across Spain, results indicate that vegetation types located in arid regions showed the strongest response to drought. Importantly, this study stresses that the time scale at which drought is assessed is a dominant factor in understanding the different responses of vegetation activity to drought.

2019 ◽  
Vol 19 (6) ◽  
pp. 1189-1213 ◽  
Author(s):  
Sergio M. Vicente-Serrano ◽  
Cesar Azorin-Molina ◽  
Marina Peña-Gallardo ◽  
Miquel Tomas-Burguera ◽  
Fernando Domínguez-Castro ◽  
...  

Abstract. Drought is a major driver of vegetation activity in Spain, with significant impacts on crop yield, forest growth, and the occurrence of forest fires. Nonetheless, the sensitivity of vegetation to drought conditions differs largely amongst vegetation types and climates. We used a high-resolution (1.1 km) spatial dataset of the normalized difference vegetation index (NDVI) for the whole of Spain spanning the period from 1981 to 2015, combined with a dataset of the standardized precipitation evapotranspiration index (SPEI) to assess the sensitivity of vegetation types to drought across Spain. Specifically, this study explores the drought timescales at which vegetation activity shows its highest response to drought severity at different moments of the year. Results demonstrate that – over large areas of Spain – vegetation activity is controlled largely by the interannual variability of drought. More than 90 % of the land areas exhibited statistically significant positive correlations between the NDVI and the SPEI during dry summers (JJA). Nevertheless, there are some considerable spatio-temporal variations, which can be linked to differences in land cover and aridity conditions. In comparison to other climatic regions across Spain, results indicate that vegetation types located in arid regions showed the strongest response to drought. Importantly, this study stresses that the timescale at which drought is assessed is a dominant factor in understanding the different responses of vegetation activity to drought.


2019 ◽  
Vol 11 (24) ◽  
pp. 2902 ◽  
Author(s):  
Chunyu Dong ◽  
Glen MacDonald ◽  
Gregory S. Okin ◽  
Thomas W. Gillespie

A combination of drought and high temperatures (“global-change-type drought”) is projected to become increasingly common in Mediterranean climate regions. Recently, Southern California has experienced record-breaking high temperatures coupled with significant precipitation deficits, which provides opportunities to investigate the impacts of high temperatures on the drought sensitivity of Mediterranean climate vegetation. Responses of different vegetation types to drought are quantified using the Moderate Resolution Imaging Spectroradiometer (MODIS) data for the period 2000–2017. The contrasting responses of the vegetation types to drought are captured by the correlation and regression coefficients between Normalized Difference Vegetation Index (NDVI) anomalies and the Palmer Drought Severity Index (PDSI). A novel bootstrapping regression approach is used to decompose the relationships between the vegetation sensitivity (NDVI–PDSI regression slopes) and the principle climate factors (temperature and precipitation) associated with the drought. Significantly increased sensitivity to drought in warmer locations indicates the important role of temperature in exacerbating vulnerability; however, spatial precipitation variations do not demonstrate significant effects in modulating drought sensitivity. Based on annual NDVI response, chaparral is the most vulnerable community to warming, which will probably be severely affected by hotter droughts in the future. Drought sensitivity of coastal sage scrub (CSS) is also shown to be very responsive to warming in fall and winter. Grassland and developed land will likely be less affected by this warming. The sensitivity of the overall vegetation to temperature increases is particularly concerning, as it is the variable that has had the strongest secular trend in recent decades, which is expected to continue or strengthen in the future. Increased temperatures will probably alter vegetation distribution, as well as possibly increase annual grassland cover, and decrease the extent and ecological services provided by perennial woody Mediterranean climate ecosystems as well.


2012 ◽  
Vol 43 (1-2) ◽  
pp. 91-101 ◽  
Author(s):  
Xiaofan Liu ◽  
Liliang Ren ◽  
Fei Yuan ◽  
Jing Xu ◽  
Wei Liu

In order to better understand the relationship between vegetation vigour and moisture availability, a correlation analysis based on different vegetation types was conducted between time series of monthly Normalized Difference Vegetation Index (NDVI) and Palmer Drought Severity Index (PDSI) during the growing season from April to October within the Laohahe catchment. It was found that NDVI had good correlation with PDSI, especially for shrub and grass. The correlation between NDVI and PDSI varies significantly from one month to another. The highest value of correlation coefficients appears in June when the vegetation is growing; lower correlations are noted at the end of growing season for all vegetation types. The influence of meteorological drought on vegetation vigour is stronger in the first half of the growing season, before the vegetation reaches the peak greenness. In order to take the seasonal effect into consideration, a regression model with seasonal dummy variables was used to simulate the relationship between NDVI and PDSI. The results showed that the NDVI–PDSI relationship is significant (α = 0.05) within the growing season, and that NDVI is an effective indicator to monitor and detect droughts if seasonal timing is taken into account.


2020 ◽  
Vol 12 (19) ◽  
pp. 3249
Author(s):  
Ankit Shekhar ◽  
Jia Chen ◽  
Shrutilipi Bhattacharjee ◽  
Allan Buras ◽  
Antony Oswaldo Castro ◽  
...  

The European heatwave of 2018 led to record-breaking temperatures and extremely dry conditions in many parts of the continent, resulting in widespread decrease in agricultural yield, early tree-leaf senescence, and increase in forest fires in Northern Europe. Our study aims to capture the impact of the 2018 European heatwave on the terrestrial ecosystem through the lens of a high-resolution solar-induced fluorescence (SIF) data acquired from the Orbiting Carbon Observatory-2 (OCO-2) satellite. SIF is proposed to be a direct proxy for gross primary productivity (GPP) and thus can be used to draw inferences about changes in photosynthetic activity in vegetation due to extreme events. We explore spatial and temporal SIF variation and anomaly in the spring and summer months across different vegetation types (agriculture, broadleaved forest, coniferous forest, and mixed forest) during the European heatwave of 2018 and compare it to non-drought conditions (most of Southern Europe). About one-third of Europe’s land area experienced a consecutive spring and summer drought in 2018. Comparing 2018 to mean conditions (i.e., those in 2015–2017), we found a change in the intra-spring season SIF dynamics for all vegetation types, with lower SIF during the start of spring, followed by an increase in fluorescence from mid-April. Summer, however, showed a significant decrease in SIF. Our results show that particularly agricultural areas were severely affected by the hotter drought of 2018. Furthermore, the intense heat wave in Central Europe showed about a 31% decrease in SIF values during July and August as compared to the mean over the previous three years. Furthermore, our MODIS (Moderate Resolution Imaging Spectroradiometer) and OCO-2 comparative results indicate that especially for coniferous and mixed forests, OCO-2 SIF has a quicker response and a possible higher sensitivity to drought in comparison to MODIS’s fPAR (fraction of absorbed photosynthetically active radiation) and the Normalized Difference Vegetation Index (NDVI) when considering shorter reference periods, which highlights the added value of remotely sensed solar-induced fluorescence for studying the impact of drought on vegetation.


Author(s):  
Wei Wang ◽  
Alim Samat ◽  
Jilili Abuduwaili ◽  
Yongxiao Ge

With the aggravation of air pollution in recent years, a great deal of research on haze episodes is mainly concentrated on the east-central China. However, fine particulate matter (PM2.5) pollution in northwest China has rarely been discussed. To fill this gap, based on the standard deviational ellipse analysis and spatial autocorrelation statistics method, we explored the spatio-temporal variation and aggregation characteristics of PM2.5 concentrations in Xinjiang from 2001 to 2016. The result showed that annual average PM2.5 concentration was high both in the north slope of Tianshan Mountain and the western Tarim Basin. Furthermore, PM2.5 concentrations on the northern slope of the Tianshan Mountain increased significantly, while showing an obviously decrease in the western Tarim Basin during the period of 2001–2016. Based on the result of the geographical detector method (GDM), population density was the most dominant factor of the spatial distribution of PM2.5 concentrations (q = 0.550), followed by road network density (q = 0.423) and GDP density (q = 0.413). During the study period (2001–2016), the driving force of population density on the distribution of PM2.5 concentrations showed a gradual downward trend. However, other determinants, like DEM (Digital elevation model), NSL (Nighttime stable light), LCT (Land cover type), and NDVI (Normalized Difference Vegetation Index), show significant increased trends. Therefore, further effort is required to reveal the role of landform and vegetation in the spatio-temporal variations of PM2.5 concentrations. Moreover, the local government should take effective measures to control urban sprawl while accelerating economic development.


Atmosphere ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 12
Author(s):  
Yulia Ivanova ◽  
Anton Kovalev ◽  
Vlad Soukhovolsky

The paper considers a new approach to modeling the relationship between the increase in woody phytomass in the pine forest and satellite-derived Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) (MODIS/AQUA) data. The developed model combines the phenological and forest growth processes. For the analysis, NDVI and LST (MODIS) satellite data were used together with the measurements of tree-ring widths (TRW). NDVI data contain features of each growing season. The models include parameters of parabolic approximation of NDVI and LST time series transformed using principal component analysis. The study shows that the current rate of TRW is determined by the total values of principal components of the satellite indices over the season and the rate of tree increment in the preceding year.


2021 ◽  
Vol 13 (9) ◽  
pp. 1618
Author(s):  
Melakeneh G. Gedefaw ◽  
Hatim M. E. Geli ◽  
Temesgen Alemayehu Abera

Rangelands provide significant socioeconomic and environmental benefits to humans. However, climate variability and anthropogenic drivers can negatively impact rangeland productivity. The main goal of this study was to investigate structural and productivity changes in rangeland ecosystems in New Mexico (NM), in the southwestern United States of America during the 1984–2015 period. This goal was achieved by applying the time series segmented residual trend analysis (TSS-RESTREND) method, using datasets of the normalized difference vegetation index (NDVI) from the Global Inventory Modeling and Mapping Studies and precipitation from Parameter elevation Regressions on Independent Slopes Model (PRISM), and developing an assessment framework. The results indicated that about 17.6% and 12.8% of NM experienced a decrease and an increase in productivity, respectively. More than half of the state (55.6%) had insignificant change productivity, 10.8% was classified as indeterminant, and 3.2% was considered as agriculture. A decrease in productivity was observed in 2.2%, 4.5%, and 1.7% of NM’s grassland, shrubland, and ever green forest land cover classes, respectively. Significant decrease in productivity was observed in the northeastern and southeastern quadrants of NM while significant increase was observed in northwestern, southwestern, and a small portion of the southeastern quadrants. The timing of detected breakpoints coincided with some of NM’s drought events as indicated by the self-calibrated Palmar Drought Severity Index as their number increased since 2000s following a similar increase in drought severity. Some breakpoints were concurrent with some fire events. The combination of these two types of disturbances can partly explain the emergence of breakpoints with degradation in productivity. Using the breakpoint assessment framework developed in this study, the observed degradation based on the TSS-RESTREND showed only 55% agreement with the Rangeland Productivity Monitoring Service (RPMS) data. There was an agreement between the TSS-RESTREND and RPMS on the occurrence of significant degradation in productivity over the grasslands and shrublands within the Arizona/NM Tablelands and in the Chihuahua Desert ecoregions, respectively. This assessment of NM’s vegetation productivity is critical to support the decision-making process for rangeland management; address challenges related to the sustainability of forage supply and livestock production; conserve the biodiversity of rangelands ecosystems; and increase their resilience. Future analysis should consider the effects of rising temperatures and drought on rangeland degradation and productivity.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 241
Author(s):  
Asish Saha ◽  
Subodh Chandra Pal ◽  
Alireza Arabameri ◽  
Thomas Blaschke ◽  
Somayeh Panahi ◽  
...  

Recurrent floods are one of the major global threats among people, particularly in developing countries like India, as this nation has a tropical monsoon type of climate. Therefore, flood susceptibility (FS) mapping is indeed necessary to overcome this type of natural hazard phenomena. With this in mind, we evaluated the prediction performance of FS mapping in the Koiya River basin, Eastern India. The present research work was done through preparation of a sophisticated flood inventory map; eight flood conditioning variables were selected based on the topography and hydro-climatological condition, and by applying the novel ensemble approach of hyperpipes (HP) and support vector regression (SVR) machine learning (ML) algorithms. The ensemble approach of HP-SVR was also compared with the stand-alone ML algorithms of HP and SVR. In relative importance of variables, distance to river was the most dominant factor for flood occurrences followed by rainfall, land use land cover (LULC), and normalized difference vegetation index (NDVI). The validation and accuracy assessment of FS maps was done through five popular statistical methods. The result of accuracy evaluation showed that the ensemble approach is the most optimal model (AUC = 0.915, sensitivity = 0.932, specificity = 0.902, accuracy = 0.928 and Kappa = 0.835) in FS assessment, followed by HP (AUC = 0.885) and SVR (AUC = 0.871).


Sign in / Sign up

Export Citation Format

Share Document