scholarly journals A Dynamic Bidirectional Coupled Hydrologic-Hydrodynamic Model for Flood Prediction

2019 ◽  
Author(s):  
Chunbo Jiang ◽  
Qi Zhou ◽  
Wangyang Yu ◽  
Chen Yang ◽  
Binliang Lin

Abstract. As one of the main natural disasters, flood disaster poses a great threat to township development and property security. Numerous hydrological models and hydrodynamic models have been developed and implemented for flood simulation, risk prediction and inundation assessment. In this study, a dynamic and bidirectional coupled hydrodynamic-hydrologic-hydrodynamic model (DBCM) is developed to predict and evaluate inundation impact in a catchment in mountain area. Based on characteristic theory, the proposed method is able to dynamically adapt and alternate the simulation domain of hydrologic model, and/or hydrodynamic model according to the local flow condition, and a key feature of the proposed model is the dynamic coupling splitting the hydrologic and hydrodynamic simulation domains. The proposed model shows good prediction accuracy and overcomes the shortage existing in previous unidirectional coupling model (UCM). Existing numerical examples and physical experiments were both used to validate the performance of DBCM. Compared to UCM, results from DBCM show good agreements with analytical and measured data which indicates that the proposed model effectively reproduces flood propagation process and accounts for surface flow interaction between non-inundation region and inundation region. Finally, DBCM is applied to predict the flood in the Longxi river basin, and the simulation results show the capability of DBCM in conducting flood event simulation in interested catchment which can support flood risk early warning and future management.

Author(s):  
Vera Hoferichter ◽  
Christoph Hirsch ◽  
Thomas Sattelmayer

Preventing flame flashback into the premixing section is one of the major challenges in premixed combustion systems. For jet flames, the flame typically propagates upstream inside the low velocity region close to the burner wall, referred to as boundary layer flashback. The physical mechanism of boundary layer flashback of laminar flames is mainly influenced by flame-wall interaction and flame quenching. Flashback is initiated if the burning velocity at some wall distance is higher than the local flow velocity. Since the burning velocity drops towards the wall due to heat losses, the wall distance of flashback can be defined at the location closest to the wall where the burning velocity still is sufficiently high. The well-established critical gradient concept of Lewis and von Elbe to predict flashback limits of laminar flames represents these assumptions but neglects the important influence of flame stretch on the burning velocity close to the wall. For that reason, a modified prediction model is developed in this work based on similar assumptions as in the critical gradient concept, but including the effect of flame stretch. A validation for hydrogen-air and methane-air flames highlights its advantages compared to the critical gradient concept and shows good prediction accuracy.


2021 ◽  
Vol 21 (2) ◽  
pp. 497-515
Author(s):  
Chunbo Jiang ◽  
Qi Zhou ◽  
Wangyang Yu ◽  
Chen Yang ◽  
Binliang Lin

Abstract. Flood disasters frequently threaten people and property all over the world. Therefore, an effective numerical model is required to predict the impacts of floods. In this study, a dynamic bidirectional coupled hydrologic–hydrodynamic model (DBCM) is developed with the implementation of characteristic wave theory, in which the boundary between these two models can dynamically adapt according to local flow conditions. The proposed model accounts for both mass and momentum transfer on the coupling boundary and was validated via several benchmark tests. The results show that the DBCM can effectively reproduce the process of flood propagation and also account for surface flow interaction between non-inundation and inundation regions. The DBCM was implemented for the floods simulation that occurred at Helin Town located in Chongqing, China, which shows the capability of the model for flood risk early warning and future management.


2013 ◽  
Vol 631-632 ◽  
pp. 681-685
Author(s):  
Fang Shao ◽  
Fa Qing Li ◽  
Hai Ying Zhang ◽  
Xuan Gao

Aero-engine alloys (also as known as superalloys)are known as difficult-to-machine materials, especially at higher cutting speeds, due to their several inherent properties such as low thermal conductivity and their high reactivity with cutting tool materials. In this paper a finite element analysis (FEA) of machining for Incoloy907 is presented. In particular, the thermodynamical constitutitve equation(T-C-E) in FEA is applied for both workpiece material and tool material. Cutting temperature and cutting force are predicted. The comparison between the predicted and experimental cutting temperature and cutting force are presented and discussed. The results indicated that a good prediction accuracy of both principal cutting temperature and cutting force can be achieved by the method of FEA with thermodynamical constitutitve equation.


2017 ◽  
Vol 21 (1) ◽  
pp. 117-132 ◽  
Author(s):  
Jannis M. Hoch ◽  
Arjen V. Haag ◽  
Arthur van Dam ◽  
Hessel C. Winsemius ◽  
Ludovicus P. H. van Beek ◽  
...  

Abstract. Large-scale flood events often show spatial correlation in neighbouring basins, and thus can affect adjacent basins simultaneously, as well as result in superposition of different flood peaks. Such flood events therefore need to be addressed with large-scale modelling approaches to capture these processes. Many approaches currently in place are based on either a hydrologic or a hydrodynamic model. However, the resulting lack of interaction between hydrology and hydrodynamics, for instance, by implementing groundwater infiltration on inundated floodplains, can hamper modelled inundation and discharge results where such interactions are important. In this study, the global hydrologic model PCR-GLOBWB at 30 arcmin spatial resolution was one-directionally and spatially coupled with the hydrodynamic model Delft 3D Flexible Mesh (FM) for the Amazon River basin at a grid-by-grid basis and at a daily time step. The use of a flexible unstructured mesh allows for fine-scale representation of channels and floodplains, while preserving a coarser spatial resolution for less flood-prone areas, thus not unnecessarily increasing computational costs. In addition, we assessed the difference between a 1-D channel/2-D floodplain and a 2-D schematization in Delft 3D FM. Validating modelled discharge results shows that coupling PCR-GLOBWB to a hydrodynamic routing scheme generally increases model performance compared to using a hydrodynamic or hydrologic model only for all validation parameters applied. Closer examination shows that the 1-D/2-D schematization outperforms 2-D for r2 and root mean square error (RMSE) whilst having a lower Kling–Gupta efficiency (KGE). We also found that spatial coupling has the significant advantage of a better representation of inundation at smaller streams throughout the model domain. A validation of simulated inundation extent revealed that only those set-ups incorporating 1-D channels are capable of representing inundations for reaches below the spatial resolution of the 2-D mesh. Implementing 1-D channels is therefore particularly of advantage for large-scale inundation models, as they are often built upon remotely sensed surface elevation data which often enclose a strong vertical bias, hampering downstream connectivity. Since only a one-directional coupling approach was tested, and therefore important feedback processes are not incorporated, simulated discharge and inundation extent for both coupled set-ups is generally overpredicted. Hence, it will be the subsequent step to extend it to a two-directional coupling scheme to obtain a closed feedback loop between hydrologic and hydrodynamic processes. The current findings demonstrating the potential of one-directionally and spatially coupled models to obtain improved discharge estimates form an important step towards a large-scale inundation model with a full dynamic coupling between hydrology and hydrodynamics.


2021 ◽  
Author(s):  
Chris Onof ◽  
Yuting Chen ◽  
Li-Pen Wang ◽  
Amy Jones ◽  
Susana Ochoa Rodriguez

<p>In this work a two-stage (rainfall nowcasting + flood prediction) analogue model for real-time urban flood forecasting is presented. The proposed approach accounts for the complexities of urban rainfall nowcasting while avoiding the expensive computational requirements of real-time urban flood forecasting.</p><p>The model has two consecutive stages:</p><ul><li><strong>(1) Rainfall nowcasting: </strong>0-6h lead time ensemble rainfall nowcasting is achieved by means of an analogue method, based on the assumption that similar climate condition will define similar patterns of temporal evolution of the rainfall. The framework uses the NORA analogue-based forecasting tool (Panziera et al., 2011), consisting of two layers. In the <strong>first layer, </strong>the 120 historical atmospheric (forcing) conditions most similar to the current atmospheric conditions are extracted, with the historical database consisting of ERA5 reanalysis data from the ECMWF and the current conditions derived from the US Global Forecasting System (GFS). In the <strong>second layer</strong>, twelve historical radar images most similar to the current one are extracted from amongst the historical radar images linked to the aforementioned 120 forcing analogues. Lastly, for each of the twelve analogues, the rainfall fields (at resolution of 1km/5min) observed after the present time are taken as one ensemble member. Note that principal component analysis (PCA) and uncorrelated multilinear PCA methods were tested for image feature extraction prior to applying the nearest neighbour technique for analogue selection.</li> <li><strong>(2) Flood prediction: </strong>we predict flood extent using the high-resolution rainfall forecast from Stage 1, along with a database of pre-run flood maps at 1x1 km<sup>2</sup> solution from 157 catalogued historical flood events. A deterministic flood prediction is obtained by using the averaged response from the twelve flood maps associated to the twelve ensemble rainfall nowcasts, where for each gridded area the median value is adopted (assuming flood maps are equiprobabilistic). A probabilistic flood prediction is obtained by generating a quantile-based flood map. Note that the flood maps were generated through rolling ball-based mapping of the flood volumes predicted at each node of the InfoWorks ICM sewer model of the pilot area.</li> </ul><p>The Minworth catchment in the UK (~400 km<sup>2</sup>) was used to demonstrate the proposed model. Cross‑assessment was undertaken for each of 157 flooding events by leaving one event out from training in each iteration and using it for evaluation. With a focus on the spatial replication of flood/non-flood patterns, the predicted flood maps were converted to binary (flood/non-flood) maps. Quantitative assessment was undertaken by means of a contingency table. An average accuracy rate (i.e. proportion of correct predictions, out of all test events) of 71.4% was achieved, with individual accuracy rates ranging from 57.1% to 78.6%). Further testing is needed to confirm initial findings and flood mapping refinement will be pursued.</p><p>The proposed model is fast, easy and relatively inexpensive to operate, making it suitable for direct use by local authorities who often lack the expertise on and/or capabilities for flood modelling and forecasting.</p><p><strong>References: </strong>Panziera et al. 2011. NORA–Nowcasting of Orographic Rainfall by means of Analogues. Quarterly Journal of the Royal Meteorological Society. 137, 2106-2123.</p>


2021 ◽  
Author(s):  
Pedram Eshaghieh Firoozabadi ◽  
sara nazif ◽  
Seyed Abbas Hosseini ◽  
Jafar Yazdi

Abstract Flooding in urban area affects the lives of people and could cause huge damages. In this study, a model is proposed for urban flood management with the aim of reducing the total costs. For this purpose, a hybrid model has been developed using SWMM and a quasi-two-dimensional model based on the cellular automata (CA) capable of considering surface flow infiltration. Based on the hybrid model outputs, the best management practices (BMPs) scenarios are proposed. In the next step, a damage estimation model has been developed using depth-damage curves. The amount of damage has been estimated for the scenarios in different rainfall return periods to obtain the damage and cost- probability functions. The conditional value at risk (CVaR) are estimated based on these functions which is the basis of decision making about the scenarios. The proposed model is examined in an urban catchment located in Tehran, Iran. In this study, five scenarios have been designed on the basis of different BMPs. It has been found that the scenario of permeable pavements has the lowest risk. The proposed model enables the decision makers to choose the best scenario with the minimum cost taking into account the risk associated with each scenario.


2013 ◽  
Vol 16 (1) ◽  
pp. 189-206 ◽  
Author(s):  
C. D. Erdbrink ◽  
V. V. Krzhizhanovskaya ◽  
P. M. A. Sloot

We combine non-hydrostatic flow simulations of the free surface with a discharge model based on elementary gate flow equations for decision support in the operation of hydraulic structure gates. A water level-based gate control used in most of today's general practice does not take into account the fact that gate operation scenarios producing similar total discharged volumes and similar water levels may have different local flow characteristics. Accurate and timely prediction of local flow conditions around hydraulic gates is important for several aspects of structure management: ecology, scour, flow-induced gate vibrations and waterway navigation. The modelling approach is described and tested for a multi-gate sluice structure regulating discharge from a river to the sea. The number of opened gates is varied and the discharge is stabilized with automated control by varying gate openings. The free-surface model was validated for discharge showing a correlation coefficient of 0.994 compared to experimental data. Additionally, we show the analysis of computational fluid dynamics (CFD) results for evaluating bed stability and gate vibrations.


Author(s):  
Smriti Chaulagain ◽  
Mark Stone ◽  
Daniel Dombroski ◽  
Tyler Gillihan ◽  
Li Chen ◽  
...  

Riparian vegetation provides many noteworthy functions in river and floodplain systems including its influence on hydrodynamic processes. Traditional methods for predicting hydrodynamic characteristics in the presence of vegetation involve the application of static roughness ( n) values, which neglect changes in roughness due to local flow characteristics. The objectives of this study were to: (1) implement numerical routines for simulating dynamic hydraulic roughness ( n) in a two-dimensional (2D) hydrodynamic model; (2) evaluate the performance of two dynamic roughness approaches; and (3) compare vegetation parameters and hydrodynamic model results based on field-based and remote sensing acquisition methods. A coupled vegetation-hydraulic solver was developed for a 2D hydraulics model using two dynamic approaches, which required vegetation parameters to calculate spatially distributed, dynamic roughness coefficients. Vegetation parameters were determined by field survey and using airborne LiDAR data. Water surface elevations modeled using conventional and the proposed dynamic approaches produced similar profiles. The method demonstrates the suitability in modeling the system where there is no calibration data. Substantial spatial variations in both n and hydraulic parameters were observed when comparing the static and dynamic approaches. Thus, the method proposed here is beneficial for describing the hydraulic conditions for the area having huge variation of vegetation. The proposed methods have the potential to improve our ability to simulate the spatial and temporal heterogeneity of vegetated floodplain surfaces with an approach that is more physically-based and reproducible than conventional “look up” approaches. However, additional research is needed to quantify model performance with respect to spatially distributed flow properties and parameterization of vegetation characteristics.


2018 ◽  
Vol 5 (4) ◽  
pp. 172004 ◽  
Author(s):  
L. Janoschek ◽  
L. Grozdev ◽  
S. Berensmeier

This work focuses on the process development of membrane-assisted solvent extraction of hydrophobic compounds such as monoterpenes. Beginning with the choice of suitable solvents, quantum chemical calculations with the simulation tool COSMO-RS were carried out to predict the partition coefficient (log P ) of (S)-(+)-carvone and terpinen-4-ol in various solvent–water systems and validated afterwards with experimental data. COSMO-RS results show good prediction accuracy for non-polar solvents such as n-hexane, ethyl acetate and n-heptane even in the presence of salts and glycerol in an aqueous medium. Based on the high log P value, n-heptane was chosen for the extraction of (S)-(+)-carvone in a lab-scale hollow-fibre membrane contactor. Two operation modes are investigated where experimental and theoretical mass transfer values, based on their related partition coefficients, were compared. In addition, the process is evaluated in terms of extraction efficiency and overall product recovery, and its biotechnological application potential is discussed. Our work demonstrates that the combination of in silico prediction by COSMO-RS with membrane-assisted extraction is a promising approach for the recovery of hydrophobic compounds from aqueous solutions.


2021 ◽  
pp. 146808742110689
Author(s):  
Bin Chen ◽  
Yunbo Hu ◽  
Yibin Guo ◽  
Zhijun Shuai ◽  
Chongpei Liu ◽  
...  

The coupling between the crankshaft and the camshaft is neglected before in fault diagnosis which may lead to incomplete fault information. In this paper, a new torsional coupling model of a diesel generator transmission system is proposed for fault diagnosis. The natural frequency and forced torsional vibration response of the model are obtained by the system matrix method and Newmark-β method. For the system without considering the lumped mass of camshafts, some key natural frequencies are lost. The vibration dynamics are compared for the transmission system with and without the new coupling model. And important frequency responses are missed in the spectrums of the forced torsional vibration without the new coupling model. Finally, the new coupling model is implemented in fault diagnosis and the cause of an unusual vibration fault is deduced in the simulation, which confirms the feasibility of the proposed model in fault diagnosis.


Sign in / Sign up

Export Citation Format

Share Document