scholarly journals Remote sensing of chlorophyll in the Baltic Sea at basin scale from 1997 to 2012 using merged multisensor data

2015 ◽  
Vol 12 (5) ◽  
pp. 2283-2313
Author(s):  
J. Pitarch ◽  
G. Volpe ◽  
S. Colella ◽  
H. Krasemann ◽  
R. Santoleri

Abstract. Fifteen-year (1997–2012) time series of chlorophyll a (CHL) in the Baltic Sea, based on merged multisensor satellite data provided by the European projects Globcolour and ESA-OC-CCI were analysed. Several available CHL algorithms were sea-truthed against a large in situ CHL dataset consisting of data by Seadatanet, HELCOM and NOAA. Matchups were calculated for three separate areas (1) Skagerrak and Kattegat, (2) Baltic Proper plus gulfs of Riga and Finland, called here "Central Baltic", (3) Gulf of Bothnia, and for the three areas as a whole. Statistics showed low linearity. The OC4v6 algorithm (R2 = 0.46, BIAS = +60 %, RMS = 79 % for the whole dataset) was linearly transformed by using the best linear fit (OC4corr). By construction, the bias was corrected, but RMS was increased instead. Despite this shortcoming, we demonstrated that errors between OC4corr and in situ data were log-normally distributed and centred at zero. Consequently, unbiased estimators of the horizontally-averaged CHL could be obtained, the error of which tends to zero when a large amount of pixels is averaged. From the basin-wide time series, the climatology and the annual anomalies were separated. The climatologies revealed completely different CHL dynamics among regions: in Skagerrak and Kattegat, CHL strongly peaks in late winter, with a minimum in summer and a secondary peak in spring. In the Central Baltic, CHL follows a dynamics of a spring CHL peak, followed by a much stronger summer bloom, with decreasing CHL towards winter. The Gulf of Bothnia shows a similar CHL dynamics as the central Baltic, although the summer bloom is absent. Across years, CHL showed great variability. Supported by auxiliary satellite sea-surface temperature (SST) data, we found that phytoplankton growth was inhibited in the central Baltic Sea in the years of colder summers or when the SST happened to increase later in the season. Extremely high CHL in spring 2008 was detected and linked to an exceptionally warm preceding winter. Sharp SST changes were found to induce CHL changes in the same direction. This phenomenon was appreciated best by overlaying the time series of the CHL and SST anomalies.

Ocean Science ◽  
2016 ◽  
Vol 12 (2) ◽  
pp. 379-389 ◽  
Author(s):  
Jaime Pitarch ◽  
Gianluca Volpe ◽  
Simone Colella ◽  
Hajo Krasemann ◽  
Rosalia Santoleri

Abstract. A 15-year (1997–2012) time series of chlorophyll a (Chl a) in the Baltic Sea, based on merged multi-sensor satellite data was analysed. Several available Chl a algorithms were sea-truthed against the largest in situ publicly available Chl a data set ever used for calibration and validation over the Baltic region. To account for the known biogeochemical heterogeneity of the Baltic, matchups were calculated for three separate areas: (1) the Skagerrak and Kattegat, (2) the central Baltic, including the Baltic Proper and the gulfs of Riga and Finland, and (3) the Gulf of Bothnia. Similarly, within the operational context of the Copernicus Marine Environment Monitoring Service (CMEMS) the three areas were also considered as a whole in the analysis. In general, statistics showed low linearity. However, a bootstrapping-like assessment did provide the means for removing the bias from the satellite observations, which were then used to compute basin average time series. Resulting climatologies confirmed that the three regions display completely different Chl a seasonal dynamics. The Gulf of Bothnia displays a single Chl a peak during spring, whereas in the Skagerrak and Kattegat the dynamics are less regular and composed of highs and lows during winter, progressing towards a small bloom in spring and a minimum in summer. In the central Baltic, Chl a follows a dynamics of a mild spring bloom followed by a much stronger bloom in summer. Surface temperature data are able to explain a variable fraction of the intensity of the summer bloom in the central Baltic.


Sensors ◽  
2019 ◽  
Vol 19 (16) ◽  
pp. 3609 ◽  
Author(s):  
Kyryliuk ◽  
Kratzer

In this study, the Level-2 products of the Ocean and Land Colour Instrument (OLCI) data on Sentinel-3A are derived using the Case-2 Regional CoastColour (C2RCC) processor for the SentiNel Application Platform (SNAP) whilst adjusting the specific scatter of Total Suspended Matter (TSM) for the Baltic Sea in order to improve TSM retrieval. The remote sensing product “kd_z90max” (i.e., the depth of the water column from which 90% of the water-leaving irradiance are derived) from C2RCC-SNAP showed a good correlation with in situ Secchi depth (SD). Additionally, a regional in-water algorithm was applied to derive SD from the attenuation coefficient Kd(489) using a local algorithm. Furthermore, a regional in-water relationship between particle scatter and bench turbidity was applied to generate turbidity from the remote sensing product “iop_bpart” (i.e., the scattering coefficient of marine particles at 443 nm). The spectral shape of the remote sensing reflectance (Rrs) data extracted from match-up stations was evaluated against reflectance data measured in situ by a tethered Attenuation Coefficient Sensor (TACCS) radiometer. The L2 products were evaluated against in situ data from several dedicated validation campaigns (2016–2018) in the NW Baltic proper. All derived L2 in-water products were statistically compared to in situ data and the results were also compared to results for MERIS validation from the literature and the current S3 Level-2 Water (L2W) standard processor from EUMETSAT. The Chl-a product showed a substantial improvement (MNB 21%, RMSE 88%, APD 96%, n = 27) compared to concentrations derived from the Medium Resolution Imaging Spectrometer (MERIS), with a strong underestimation of higher values. TSM performed within an error comparable to MERIS data with a mean normalized bias (MNB) 25%, root-mean square error (RMSE) 73%, average absolute percentage difference (APD) 63% n = 23). Coloured Dissolved Organic Matter (CDOM) absorption retrieval has also improved substantially when using the product “iop_adg” (i.e., the sum of organic detritus and Gelbstoff absorption at 443 nm) as a proxy (MNB 8%, RMSE 56%, APD 54%, n = 18). The local SD (MNB 6%, RMSE 62%, APD 60%, n = 35) and turbidity (MNB 3%, RMSE 35%, APD 34%, n = 29) algorithms showed very good agreement with in situ data. We recommend the use of the SNAP C2RCC with regionally adjusted TSM-specific scatter for water product retrieval as well as the regional turbidity algorithm for Baltic Sea monitoring. Besides documenting the evaluation of the C2RCC processor, this paper may also act as a handbook on the validation of Ocean Colour data.


2019 ◽  
Vol 11 (8) ◽  
pp. 954
Author(s):  
Malgorzata Stramska ◽  
Paulina Aniskiewicz

Variability of sea level in the North and Baltic Seas, enforced by weather patterns, affects the intensity of water exchange between these seas. Transfer of salty water from the North Sea is very important for the hydrography of the Baltic Sea. The volume of inflowing salty water can occasionally increase remarkably. Such incidents, called the Major Baltic Inflows (MBIs), are unpredictable, of relatively short duration, and difficult to observe using in situ data. We have shown that remote sensing altimetry can be used as a complementary source of information about the MBI events. The advantage of using such data is that large-scale spatial information about SLA is available with daily resolution. We have described changes in SLA during several MBI events observed in 1993–2017. The net volume of water transported into the Baltic Sea varied between the events due to differences in atmospheric forcing. Based on SLA data, the largest inflow of water happened during the 2014 MBI. This is in agreement with previously published results, based on in situ data.


2021 ◽  
Vol 13 (15) ◽  
pp. 3049
Author(s):  
Malgorzata Stramska ◽  
Marta Konik ◽  
Paulina Aniskiewicz ◽  
Jaromir Jakacki ◽  
Miroslaw Darecki

Among the most frequently used satellite data are surface chlorophyll concentration (Chl) and temperature (SST). These data can be degraded in some coastal areas, for example, in the Baltic Sea. Other popular sources of data are reanalysis models. Before satellite or model data can be used effectively, they should be extensively compared with in situ measurements. Herein, we present results of such comparisons. We used SST and Chl from model reanalysis and satellites, and in situ data measured at eight open Baltic Sea stations. The data cover time interval from 1 January 1998 to 31 December 2019, but some satellite data were not always available. Both the model and the satellite SST data had good agreement with in situ measurements. In contrast, satellite and model estimates of Chl concentrations presented large errors. Modeled Chl presented the lowest bias and the best correlation with in situ data from all Chl data sets evaluated. Chl estimates from a regionally tuned algorithm (SatBaltic) had smaller errors in comparison with other satellite data sets and good agreement with in situ data in summer. Statistics were not as good for the full data set. High uncertainties found in chlorophyll satellite algorithms for the Baltic Sea highlight the importance of continuous regional validation of such algorithms with in situ data.


2021 ◽  
Vol 2 (1) ◽  
pp. 120-132
Author(s):  
Douglas J. Mills ◽  
Katarzyna Schaefer ◽  
Tomasz Wityk

Electrochemical Noise Measurement (ENM) and DC electrolytic resistance measurement (ERM) can be used to assess the level of protectiveness provided by an organic coating (paint or varnish) to the underlying metal. These techniques also have applicability to the thinner, transparent type of coatings used to protect archaeological artefacts. Two studies are presented here demonstrating how ERM and ENM techniques can be applied in artefact preservation. The similarity of the techniques, both of which are a measure of resistance, means results can be considered to be analogous. The first study investigated the use of ERM to determine the protection levels provided by typical coatings in order to develop a database of coating type and application for objects, for specific environments. The second study used ENM to evaluate coatings which had been applied to historic artefacts recovered from shipwrecks in the Baltic Sea and displayed inside the museum or kept in the museum store area. The studies showed the usefulness of both techniques for determining the level of protection of a coating and how a better performing coating can be specified if a pre-existing coating on an artefact has been found to be unsuitable.


GeoResJ ◽  
2015 ◽  
Vol 7 ◽  
pp. 14-21 ◽  
Author(s):  
M. Nordman ◽  
H. Virtanen ◽  
S. Nyberg ◽  
J. Mäkinen

2016 ◽  
Vol 42 (2) ◽  
pp. 31-38
Author(s):  
Diāna Haritonova

The objective of this paper is to analyse water level variations of the Baltic Sea on the Latvian coast. This is important because the Baltic Sea exhibits a number of remarkable phenomena. One of them is the sea level variations due to winds, complicated by the shape of the gulfs and islands. Under this influence the range of the sea level variations can reach 3 m on the coasts of gulfs. However, the tidal variations of the Baltic Sea range in the order of centimetres only. In the frame of this study, using hourly time series of the sea level records from 7 Latvian coastal hydrologic stations and employing spectral analysis, it has become feasible to identify diurnal and semi-diurnal tide existence both in the Gulf of Riga and in the Baltic Sea at the Latvian coast. Totally 4 main tidal constituents (O1, K1, M2, S2) have been identified. Additionally, nontidal frequency of 5 cycles per day has been detected in the sea level time series of the stations located in the Gulf of Riga.


Sign in / Sign up

Export Citation Format

Share Document