scholarly journals Development and testing of a tool for the decontamination of corners and inner edges on concrete surfaces

2021 ◽  
Vol 1 ◽  
pp. 33-34
Author(s):  
Shanyao Zhang ◽  
Sascha Gentes ◽  
Kurt Heppler ◽  
Alexander Heneka ◽  
Carla-Olivia Krauß ◽  
...  

Abstract. For the decontamination of flat concrete surfaces, a wide variety of tools are available; however, these tools cannot be used for the decontamination of corners, inner edges, gaps and other geometrical discontinuities. Currently, these areas are worked by hand-held tools with a connected vacuum exhaust system to reduce dust emissions. The combination of using heavy hand-operated tools with exhaust systems on difficult to access areas as well as the forces and vibration of the tools, make the task of decontamination a burden and add additional physical stress for the operator. The goal of the research project called EKont, funded by the German Ministry for Education and Research, BMBF), is, to develop an innovative semi-automated demonstrator for dry mechanical decontamination of corners, edges and geometrical discontinuities in nuclear facilities. The tool will have a flexible housing with an integrated exhaust system to reduce the dust load. This specialized tool should make the decontamination of corners and inner edges more effective regarding time and the generation of secondary waste and should further spare the musculoskeletal system of the operator physical stress by lowering the vibrations and weight of the tool. For this task, a test bench for testing and evaluating different methods of surface decontamination has been set up. The test bench enables the measurement of forces and vibrations of the machine during the decontamination and the dust emissions. Based on the analysis of different decontamination methods and tools, four prototypes are being developed. This project also aims at the scientific investigation of experimentally collected performance parameters, such as feed rate, removal depth per operation, surface roughness and removal rate, in order to determine the relevant parameters of the developed prototypes. A field test of the prototypes together with decommissioning companies is scheduled. The prototype is not limited to use in nuclear facilities but later can also be used in conventional fields, for example in the decontamination of materials containing PCBs and asbestos. In this presentation the EKont test bench and prototypes will be explained and the test results will be presented.

2012 ◽  
Vol 500 ◽  
pp. 223-229 ◽  
Author(s):  
Peng Qi Zhang ◽  
Dong Hui Zhao ◽  
Peng Wu ◽  
Yin Yan Wang

This article take the Dongan 465Q non-supercharged engine as the research object, the simulation model is built by GT-POWER and the corresponding test bench is set up. The simulation error is less than 3%, which indicates that the parameters of this model is correct, and can be used for further study of the gasoline engine. The supercharger, Garrett GT12, is selected by the matching calculation. The non-supercharged 465Q engine is modified as a turbocharged engine. The test results show that the power and the fuel consumption of the turbocharged engine is improved obviously, whose power is increased by 48% and fuel consumption is reduced by 4%.


2020 ◽  
Vol 50 (1) ◽  
pp. 61-76
Author(s):  
Paweł Fuć ◽  
Piotr Lijewski ◽  
Barbara Sokolnicka ◽  
Natalia Szymlet ◽  
Maciej Siedlecki ◽  
...  

AbstractThe article presents emission test results comparison carried out on a dynamic engine dynamometer. Parameters were recorded during a drive made in accordance with the requirements of the RDE. Test bench allowed to determine the particle mass and number emission in the repetitive engine operation conditions. One of three used elements wan an OEM solution from one of particulate filters producers, the other was intended for use in original systems, the third was a custom product. The highest efficiency of particulate filtration was demonstrated by the last filter, which was adapted to the engine.


2021 ◽  
Author(s):  
Arjen Koop ◽  
Pierre Crepier ◽  
Sebastien Loubeyre ◽  
Corentin Dobral ◽  
Kai Yu ◽  
...  

Abstract Estimates for roll damping are important input parameters for simulation studies on vessels operating at sea, e.g. FPSO mooring in waves, wind and current, workability and operability investigations, Dynamic Position studies, ship-to-ship operations and safety studies of vessels. To accurately predict the motions of vessels this quantity should be determined with confidence in the values. Traditionally, model experiments in water basins using so-called decay tests are carried out to determine the roll damping. With recent advancements in CFD modelling, the offshore industry has started using CFD as an alternative tool to compute the roll damping of FPSO’s. In order to help adopt CFD as a widely accepted tool, there is a need to develop confidence in CFD predictions. Therefore, a practical CFD modelling practice is developed within the Reproducible CFD JIP for roll decay CFD simulations. The Modelling Practice describes the geometry modelling, computational mesh, model set-up and post-processing for these type of CFD calculations. This modelling practice is verified and validated by three independent verifiers against available model test data. This paper provides an overview of the developed modelling practice and the calculated CFD results from the verifiers. The CFD modelling practice is benchmarked against available model test results for a tanker-shaped FPSO. By following this modelling practice, the CFD predictions for the equivalent linear damping coefficient and natural period of the roll motions are within 10% for all verifiers and within 10% from the model test results. Therefore, we conclude that when following the developed modelling practice for roll decay simulations, reliable, accurate and reproducible results can be obtained for the roll damping of tanker-shaped FPSOs.


2021 ◽  
Vol 64 (4) ◽  
pp. 1381-1389
Author(s):  
Fengwei Gu ◽  
Meng Yang ◽  
Zhichao Hu ◽  
Yanhua Zhang ◽  
Chong Zhang ◽  
...  

HighlightsAn efficient method for separating peanut seedlings and residual film harvested from film-mulched peanut was proposed, and the mechanism was optimized.The relationships between the suspension velocity and moisture content of different shredded materials were studied.Four-factor, three-level Box-Behnken experiments were carried out and analyzed, and the optimal parameter combination was determined.A validation test was carried out to verify the rationality and accuracy of the optimized regression model.Abstract. To address the problems of lower residual film removal and higher material loss in the forage utilization of peanut seedlings wrapped in residual film, this study explored the relationships between the suspension velocity and moisture content of different shredded materials derived from peanut seedlings and conducted performance tests and parameter optimization for a machine that uses peanut seedlings as forage material. Four-factor, three-level Box-Behnken experiments were designed using the rotational speeds of the shredding shaft, upper fans, and lower fans and the frequency of the vibrating sieve as test factors, and using the residual film removal rate and material loss rate as response values. The test results indicated that the suspension velocity of the shredded materials showed a quadratic relationship with moisture content. The performance tests showed that the significance sequence of the test factors for the residual film removal rate was: rotational speed of the lower fans, rotational speed of the upper fans, rotational speed of the shredding shaft, and frequency of the vibrating sieve. The significance sequence for the material loss rate was: rotational speed of the lower fans, rotational speed of the shredding shaft, frequency of the vibrating sieve, and rotational speed of the upper fans. The parameter optimization and validation test showed that the residual film removal rate was 92.71% and the material loss rate was 8.19% when the rotational speeds of the shredding shaft, upper fans, and lower fans were 1650, 770, and 665 rpm, respectively, and the frequency of the vibrating sieve was 4 Hz. The relative errors between the validation test results and the predicted values from the regression models were less than 3%, which suggests that the regression models are reliable. This study provides a reference for the forage utilization of peanut seedlings harvested from film-mulched peanut and provides a reference for determining the optimal working parameters of forage processing machines. Keywords: Agricultural machinery, Box-Behnken experiment, Optimization, Peanut film-seedling separation, Suspension velocity.


2007 ◽  
Vol 129 (3) ◽  
pp. 647-654 ◽  
Author(s):  
Philippe Michaud ◽  
Aurelian Fatu ◽  
Bernard Villechaise

The paper presents a new experimental device made to analyze the thermoelastohydrodynamic (TEHD) behavior of connecting-rod bearings functioning in severe conditions. First, it focuses on the test bench description. The general principle of the test bench and then the main original technological solutions used with respect to the functional specifications are detailed. Two numerical models are described. They were developed in order to design and to validate two central components of the experimental device. Finally, the paper comments on the test results used to understand and validate the traction∕compression loading system, which is one of the key points in the test bench behavior.


2016 ◽  
Vol 43 (12) ◽  
pp. 1025-1033 ◽  
Author(s):  
Xiaojuan Yang ◽  
Miguel de Lucas Pardo ◽  
Maria Ibanez ◽  
Lijun Deng ◽  
Luca Sittoni ◽  
...  

Accelerating dewatering of fluid fine tailings (FFT) to facilitate land reclamation is a major challenge to the oil sands industry in Canada. A new method was tested, addition of Tubifex to FFT. Tubifex is an indigenous earthworm in Canada. The survival rate tests showed that Tubifex can survive in oil sands tailings and penetrate to 42 cm depth (maximum depth tested). Columns (5 L of FFT) were set-up with tailings alone, Tubifex treated tailings and polymer-Tubifex treated tailings. Test results showed that (a) the final mud–water interface of tailings alone was 26% higher than that of Tubifex treated tailings; (b) solids content of Tubifex treated tailings was 21% more than that of tailings alone; (c) Tubifex was capable to accelerate the dewatering process of both cationic and anionic polymer treated tailings; (d) anionic polymer was superior in facilitating long-term dewatering and its coupled effects with Tubifex were better than the cationic polymer.


2014 ◽  
Vol 926-930 ◽  
pp. 4361-4364
Author(s):  
Xiao Qiao Song

When straw pulp papermaking wastewater was treated by the process of coagu-flocculation and nuclear-flocculation, there were still high CODCr. UV254 can reflect organic pollutants and organic pollutants of unsaturated aromatic ring, carbon-carbon double bond. With the decrease of molecular weight of organic pollutants, absorption of ultraviolet light will decrease. Indirectly, it reflectd that the combination process had a good removal effect on high molecular aromatic hydrocarbons difficult to be biodegraded. Meanwhile it can improve the the biodegradability. It used the activated sludge process as subsequent process of coagulation and-flocculation process. The test results showed that the removal rate of CODCr was 24.1%, CODCr was the 88.1mg/L. It reached effluent standard.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Guodong Zhai ◽  
Xujie Qin ◽  
Xing Yang

As a renewable energy source, wind energy has received more and more attention, and the wind power industry has also been advocated and developed by countries all over the world. In the production and use of wind turbines, the design and manufacturing technology of wind turbine bearings is very important. In order to ensure the reliable operation of the wind power main bearing after installation and realize the longest life of it, this paper designs a bearing test bench that can test the performance of the wind power main bearing. It can analyze the temperature, displacement, load, and moment of the key parts of the 5 MW wind power main shaft bearing. The solid modeling of the experimental platform was carried out using the 3D modeling software SolidWorks. Hydraulic loading system and test monitoring system are designed to realize the drive and control of the test bench. Through the established mathematical model, the central load of the hub is converted into the axial cylinder load and the radial cylinder load of the test bench to simulate the actual working conditions of the tested bearing. The test results show that the test bench meets various loading requirements and can reliably complete the task of testing wind power main bearings.


Sign in / Sign up

Export Citation Format

Share Document