scholarly journals Structure of massively dilatant faults in Iceland: lessons learned from high-resolution unmanned aerial vehicle data

Solid Earth ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 1757-1784 ◽  
Author(s):  
Christopher Weismüller ◽  
Janos L. Urai ◽  
Michael Kettermann ◽  
Christoph von Hagke ◽  
Klaus Reicherter

Abstract. Normal faults in basalts develop massive dilatancy in the upper few hundred meters below the Earth's surface with corresponding interactions with groundwater and lava flow. These massively dilatant faults (MDFs) are widespread in Iceland and the East African Rift, but the details of their geometry are not well documented, despite their importance for fluid flow in the subsurface, geohazard assessment and geothermal energy. We present a large set of digital elevation models (DEMs) of the surface geometries of MDFs with 5–15 cm resolution, acquired along the Icelandic rift zone using unmanned aerial vehicles (UAVs). Our data present a representative set of outcrops of MDFs in Iceland, formed in basaltic sequences linked to the mid-ocean ridge. UAVs provide a much higher resolution than aerial/satellite imagery and a much better overview than ground-based fieldwork, bridging the gap between outcrop-scale observations and remote sensing. We acquired photosets of overlapping images along about 20 km of MDFs and processed these using photogrammetry to create high-resolution DEMs and orthorectified images. We use this dataset to map the faults and their damage zones to measure length, opening width and vertical offset of the faults and identify surface tilt in the damage zones. Ground truthing of the data was done by field observations. Mapped vertical offsets show typical trends of normal fault growth by segment coalescence. However, opening widths in map view show variations at much higher frequency, caused by segmentation, collapsed relays and tilted blocks. These effects commonly cause a higher-than-expected ratio of vertical offset and opening width for a steep normal fault at depth. Based on field observations and the relationships of opening width and vertical offset, we define three endmember morphologies of MDFs: (i) dilatant faults with opening width and vertical offset, (ii) tilted blocks (TBs) and (iii) opening-mode (mode I) fissures. Field observation of normal faults without visible opening invariably shows that these have an opening filled with recent sediment. TB-dominated normal faults tend to have the largest ratio of opening width and vertical offset. Fissures have opening widths up to 15 m with throw below a 2 m threshold. Plotting opening width versus vertical offset shows that there is a continuous transition between the endmembers. We conclude that for these endmembers, the ratio between opening width and vertical offset R can be reliably used to predict fault structures at depth. However, fractures associated with MDFs belong to one larger continuum and, consequently, where different endmembers coexist, a clear identification of structures solely via the determination of R is impossible.

2019 ◽  
Author(s):  
Christopher Weismüller ◽  
Janos L. Urai ◽  
Michael Kettermann ◽  
Christoph von Hagke ◽  
Klaus Reicherter

Abstract. Normal faults in basalts develop massive dilatancy up to several tens of meters close to the Earth's surface and show corresponding interactions with groundwater and lava flow. These massively dilatant faults (MDF) are widespread in extensional settings like Iceland or the East African Rift, but their detailed geometry is not well understood, despite their importance for fluid flow in the subsurface, geohazards or geothermal energy. We present a large set of digital elevation models (DEM) of the surface geometries of MDF with 5–15 cm resolution, acquired along the Icelandic Rift zone using unmanned aerial vehicles (UAV). UAV provide a much higher resolution than aerial/satellite imagery and a much better overview than ground-based fieldwork, thus bridging the gap between outcrop scale and regional observations. Our data present representative outcrops of MDF, formed in basaltic sequences linked to the Mid Ocean Ridge. We acquired photosets of overlapping images along about 20 km of MDF and processed these using photogrammetry to create high resolution DEMs and ortho-rectified images. We use this dataset to map the faults and their damage zones to measure length, opening width and vertical offset of the faults and identify surface tilt in the damage zones. Ground truthing of the data was done by field observations. Mapped vertical offsets show typical trends of normal fault growth by segment coalescence. However, opening widths in map-view show variations at much higher frequency, caused by segmentation, collapsed relays and tilted blocks. These effects cause a commonly higher than expected ratio of vertical offset and opening width for a steep normal fault at depth. Based on field observations and the relationships of opening width and vertical offset, we define three endmember morphologies of MDF: (i) dilatant faults with opening width and vertical offset, (ii) tilted blocks (TB), and (iii) opening mode (mode I) fissures. Field observation of normal faults without visible opening invariably shows that these have an opening filled by recent sediment. TB dominated normal faults tend to have a largest opening width with respect to vertical offsets. Fissures have opening widths up to 15 m with throw below a 2 m threshold. Plotting opening width versus vertical offset of the fractures shows that there is a continuous transition between the endmembers. We conclude that fractures associated with MDF belong to one larger continuum and the three endmembers are thus not necessarily indicative for fracture maturity.


Geology ◽  
2019 ◽  
Vol 47 (8) ◽  
pp. 781-785 ◽  
Author(s):  
Michael Kettermann ◽  
Christopher Weismüller ◽  
Christoph von Hagke ◽  
Klaus Reicherter ◽  
Janos L. Urai

Abstract Surface ramps in normal fault zones of the Iceland plate boundary have been described in many studies, but their structure and evolution are not well understood. We show that surface ramps are manifestations of large tilted blocks (TBs) formed in dip relays of normal faults. Based on existing modeling studies, we propose three classes of TBs defined by kinematics and location of the hinge of the TB. TBs are considered a member of the family of fault relay structures that form near the surface, commonly, but not exclusively, in columnar basalts with orthotropic strength. We present high-resolution aerial vehicle–based observations of a representative set of normal faults in Iceland and compare these with geometric models we derived from modeling studies. We predict extensive tectonic cave (fluid conduit) systems under the TB, which interact with magma and groundwater flow. The general fault structure is dominated by large, subvertical open fractures reactivating cooling joints that are locally filled by basalt rubble. We propose the existence of a hybrid failure zone at larger depths before the effective vertical stress is sufficient to initiate shear fractures in intact basalt.


2020 ◽  
Vol 110 (3) ◽  
pp. 1090-1100
Author(s):  
Ronia Andrews ◽  
Kusala Rajendran ◽  
N. Purnachandra Rao

ABSTRACT Oceanic plate seismicity is generally dominated by normal and strike-slip faulting associated with active spreading ridges and transform faults. Fossil structural fabrics inherited from spreading ridges also host earthquakes. The Indian Oceanic plate, considered quite active seismically, has hosted earthquakes both on its active and fossil fault systems. The 4 December 2015 Mw 7.1 normal-faulting earthquake, located ∼700  km south of the southeast Indian ridge in the southern Indian Ocean, is a rarity due to its location away from the ridge, lack of association with any mapped faults and its focal depth close to the 800°C isotherm. We present results of teleseismic body-wave inversion that suggest that the earthquake occurred on a north-northwest–south-southeast-striking normal fault at a depth of 34 km. The rupture propagated at 2.7  km/s with compact slip over an area of 48×48  km2 around the hypocenter. Our analysis of the background tectonics suggests that our chosen fault plane is in the same direction as the mapped normal faults on the eastern flanks of the Kerguelen plateau. We propose that these buried normal faults, possibly the relics of the ancient rifting might have been reactivated, leading to the 2015 midplate earthquake.


Solid Earth ◽  
2015 ◽  
Vol 6 (1) ◽  
pp. 285-302 ◽  
Author(s):  
F. L. Schenker ◽  
M. G. Fellin ◽  
J.-P. Burg

Abstract. The Pelagonian zone, situated between the External Hellenides/Cyclades to the west and the Axios/Vardar/Almopias zone (AVAZ) and the Rhodope to the east, was involved in late Early Cretaceous and in Late Cretaceous–Eocene orogenic events whose duration and extent are still controversial. This paper constrains their late thermal imprints. New and previously published zircon (ZFT) and apatite (AFT) fission-track ages show cooling below 240 °C of the metamorphic western AVAZ imbricates between 102 and 93–90 Ma, of northern Pelagonia between 86 and 68 Ma, of the eastern AVAZ at 80 Ma and of the western Rhodope at 72 Ma. At the regional scale, this heterogeneous cooling is coeval with subsidence of Late Cretaceous marine basin(s) that unconformably covered the Early Cretaceous (130–110 Ma) thrust system from 100 Ma. Thrusting resumed at 70 Ma in the AVAZ and migrated across Pelagonia to reach the External Hellenides at 40–38 Ma. Renewed thrusting in Pelagonia is attested at 68 Ma by abrupt and rapid cooling below 240 °C and erosion of the gneissic rocks. ZFT and AFT in western and eastern Pelagonia, respectively, testify at ~40 Ma to the latest thermal imprint related to thrusting. Central-eastern Pelagonia cooled rapidly and uniformly from 240 to 80 °C between 24 and 16 Ma in the footwall of a major extensional fault. Extension started even earlier, at ~33 Ma in the western AVAZ. Post-7 Ma rapid cooling is inferred from inverse modeling of AFT lengths. It occurred while E–W normal faults were cutting Pliocene-to-recent sediment.


Minerals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 394 ◽  
Author(s):  
Seconde Ntiharirizwa ◽  
Philippe Boulvais ◽  
Marc Poujol ◽  
Yannick Branquet ◽  
Cesare Morelli ◽  
...  

The Gakara Rare Earth Elements (REE) deposit is one of the world’s highest grade REE deposits, likely linked to a carbonatitic magmatic-hydrothermal activity. It is located near Lake Tanganyika in Burundi, along the western branch of the East African Rift. Field observations suggest that the mineralized veins formed in the upper crust. Previous structures inherited from the Kibaran orogeny may have been reused during the mineralizing event. The paragenetic sequence and the geochronological data show that the Gakara mineralization occurred in successive stages in a continuous hydrothermal history. The primary mineralization in bastnaesite was followed by an alteration stage into monazite. The U-Th-Pb ages obtained on bastnaesite (602 ± 7 Ma) and on monazite (589 ± 8 Ma) belong to the Pan-African cycle. The emplacement of the Gakara REE mineralization most likely took place during a pre-collisional event in the Pan-African belt, probably in an extensional context.


Author(s):  
Jill Braun ◽  
Stuart Clouston

On May 21, 2009, the Pipeline & Hazardous Materials Safety Administration (PHMSA) issued an Advisory Bulletin (PHMSA-2009-0148) entitled, “Potential for Low and Variable Yield, Tensile Strength and Chemical Compositions in High Strength Line Pipe” [1] recommending that pipeline operators investigate whether recently constructed pipelines contain pipe joints not meeting the minimum specification requirements (74FR2390). Based on PHMSA’s technical reviews, high resolution deformation tool inspection combined with comprehensive infield verification has been recommended in accordance with the “Interim Guidelines for Confirming Pipe Strength in Pipe Susceptible to Low Yield Strength,” issued by PHMSA in September 2009[2]. Kern River Gas Transmission Company (Kern River) underwent a detailed program of engineering and assessment in order to proactively demonstrate compliance with the interim guidelines. This paper discusses the process, inspection results and infield verifications performed by the pipeline operator. In particular, detailed consideration to the methodology of detection and assessment of potential pipeline expansions is presented with discussion on the special considerations needed for low level anomaly identification, reporting and verification of expansions as defined in the PHMSA guidelines. High resolution caliper analysis approaches developed for this particular application are discussed and appropriate techniques are recommended that consider the effects of possible asymmetry of expansions and impact of other deformations such as ovality. Field verification practices and findings are reviewed in detail with particular focus on the challenges facing the pipeline operator in resolving both tool and in-field measurement errors that can significantly impact the number of identifiable candidate expansions for verification. In conclusion, an overview of the assessment criteria and field activity to comply with the PHMSA interim guidelines are presented along with the lessons learned from the analysis, verification and remediation steps that may assist other pipeline operators as they address these newly established regulatory requirements.


2001 ◽  
Vol 34 (1) ◽  
pp. 235 ◽  
Author(s):  
N. FLOTTÉ ◽  
D. SOREL

Structural mapping in northern Peloponnesus reveals the emergence of an E-W striking, more than 70km long, low angle detachment fault dipping to the north beneath the Gulf of Corinth. This paper describes four north-south structural cross-sections in northern Peloponnesus. Structural and sedimentological field observations show that in the studied area the normal faults of northern Peloponnesus branch at depth on this major low angle north-dipping brittle detachment. The southern part of the detachment and the related normal faults are now inactive. To the north, the active Helike and Aigion normal faults are connected at depth with the seismically active northern part of the detachment beneath the Gulf of Corinth.


2020 ◽  
Vol 6 (1) ◽  
pp. 00171-2019 ◽  
Author(s):  
Ronja Weber ◽  
Naemi Haas ◽  
Astghik Baghdasaryan ◽  
Tobias Bruderer ◽  
Demet Inci ◽  
...  

Early pulmonary infection and inflammation result in irreversible lung damage and are major contributors to cystic fibrosis (CF)-related morbidity. An easy to apply and noninvasive assessment for the timely detection of disease-associated complications would be of high value. We aimed to detect volatile organic compound (VOC) breath signatures of children with CF by real-time secondary electrospray ionisation high-resolution mass spectrometry (SESI-HRMS).A total of 101 children, aged 4–18 years (CF=52; healthy controls=49) and comparable for sex, body mass index and lung function were included in this prospective cross-sectional study. Exhaled air was analysed by a SESI-source linked to a high-resolution time-of-flight mass spectrometer. Mass spectra ranging from m/z 50 to 500 were recorded.Out of 3468 m/z features, 171 were significantly different in children with CF (false discovery rate adjusted p-value of 0.05). The predictive ability (CF versus healthy) was assessed by using a support-vector machine classifier and showed an average accuracy (repeated cross-validation) of 72.1% (sensitivity of 77.2% and specificity of 67.7%).This is the first study to assess entire breath profiles of children with SESI-HRMS and to extract sets of VOCs that are associated with CF. We have detected a large set of exhaled molecules that are potentially related to CF, indicating that the molecular breath of children with CF is diverse and informative.


Sign in / Sign up

Export Citation Format

Share Document