Stability of Ruthenium-Silica Bilayer Structures

1994 ◽  
Vol 343 ◽  
Author(s):  
Zara Weng-Sieh ◽  
Tai. D. Nguyen ◽  
Ronald Gronsky

ABSTRACTThe microstructural evolution of ruthenium-silicon dioxide bilayer structures upon annealing is studied using transmission electron microscopy. SiO2/Ru/SiO2 structures, with thicknesses of 2/1/2 nm, 4/2/4 nm, 8/4/8 nm, and 20/10/20 nm, are formed by magnetron sputtering and annealed at 300 or 600°C. As-deposited films have grain sizes on the order of the Ru film thickness. After annealing at 600°C, significant grain growth is observed for all thicknesses, such that the final grain sizes are approximately 3 to 20x greater than the original film thickness. The largest increase in the average Ru grain size is observed for the 2 nm thick ruthenium film possibly due to the coalescence of Ru grains. The coalescence of the Ru particles in the 1 and 2 nm thick films results in the formation of lamellar Ru grains, which disrupts the contiguity of the Ru film. In all other cases, the increase in grain size is attributed to normal grain growth, but the formation of anomalous spherical grains is also observed.

1999 ◽  
Vol 564 ◽  
Author(s):  
Qing-Tang Jiang ◽  
Michael E. Thomas ◽  
Gennadi Bersuker ◽  
Brendan Foran ◽  
Robert Mikkola ◽  
...  

AbstractTransformations in electroplated Cu films from a fine to course grain crystal structure (average grain sizes went from ∼0.1 µm to several microns) were observed to strongly depend on film thickness and geometry. Thinner films underwent much slower transformations than thicker ones. A model is proposed which explains the difference in transformation rates in terms of the physical constraint experienced by the film since grain growth in thinner films is limited by film thickness. Geometrical constraints imposed by trench and via structures appear to have an even greater retardation effect on the grain growth. Experimental observations indicate that it takes much longer for Cu in damascene structures to go through grain size transformations than blanket films.


1987 ◽  
Vol 93 ◽  
Author(s):  
J. Li ◽  
B. X. Liu ◽  
H. D. Li

ABSTRACTExperiments concerning the behavior of grain size in Co80Cr20 alloy thin films upon ion irradiation were conducted. The alloy films of 80 nm thick were prepared by magnetron sputtering on cleaved NaCl crystal substrates, and then irradiated by 300 keV argon or xenon ions to a wide range of doses. The irradiated samples, before and after annealing, were examined by transmission electron microscope (TEM). It was found that the initial grain size with the dimension of 20 nm remained unchanged when the dose was less than 1×1016Ar/cm2, but rapidly reduced to the scale of 5 nm at a dose of 5×1016Ar/cm2. It is thought that this is due to a polymorphic transformation of an HCP to a BCC structure in the alloy films. After 30 min. anneals at 200° C, it was observed that the grain growth rate was a function of ion dose, and that there exists a critical fluence yielding a maximum grain growth rate. The possible mechanisms for the observations in this study are discussed.


2007 ◽  
Vol 551-552 ◽  
pp. 387-392 ◽  
Author(s):  
Wen Juan Zhao ◽  
Hua Ding ◽  
D. Song ◽  
F.R. Cao ◽  
Hong Liang Hou

In this study, superplastic tensile tests were carried out for Ti-6Al-4V alloy using different initial grain sizes (2.6 μm, 6.5μm and 16.2 μm) at a temperature of 920°C with an initial strain rate of 1×10-3 s-1. To get an insight into the effect of grain size on the superplastic deformation mechanisms, the microstructures of deformed alloy were investigated by using an optical microscope and transmission electron microscope (TEM). The results indicate that there is dramatic difference in the superplastic deformation mode of fine and coarse grained Ti-6Al-4V alloy. Meanwhile, grain growth induced by superplastic deformation has also been clearly observed during deformation process, and the grain growth model including the static and strain induced part during superplastic deformation was utilized to analyze the data of Ti-6Al-4V alloy.


1992 ◽  
Vol 7 (11) ◽  
pp. 2962-2970 ◽  
Author(s):  
H. Chang ◽  
C.J. Altstetter ◽  
R.S. Averback

Nanophase TiAl, with grain sizes in the range of 10–20 nm, was synthesized by magnetron sputtering in an inert gas atmosphere and consolidated, in situ, under vacuum. The properties of the powders and sintered compacts were studied by transmission electron microscopy, scanning electron microscopy, calorimetry, Rutherford backscattering, and x-ray diffraction. Samples compacted at 1.0 GPa at room temperature had a large fraction of amorphous phase, while samples compacted at the same pressure and 250 °C were predominantly the equilibrium γ phase. An enthalpy change of 22 kJ/g-atom was measured during a DSC scan over the temperature range 125–450 °C, which is approximately the range over which crystallization occurs. Nearly full density could be achieved by sintering at 450 °C without significant, concomitant grain growth. The Vickers microhardness of these samples at room temperature and at −30 °C revealed an inverse Hall–Petch relationship at small grain sizes, 10–30 nm, and the usual Hall–Petch behavior at larger grain sizes. A small component of indentation creep was also observed. The maximum hardness is 4 times larger than that of a cast TiAl specimen of the same composition. The Vickers hardness was also observed to decrease rapidly with temperature above 200 °C.


2011 ◽  
Vol 691 ◽  
pp. 65-71 ◽  
Author(s):  
Rodolfo F. K. Gunnewiek ◽  
Ruth Herta Goldsmith Aliaga Kiminami

Grain growth is inevitable in the sintering of pure nanopowder zinc oxide. Sintering depend on diffusion kinetics, thus this growth could be controlled by ultra-fast sintering techniques, as microwave sintering. The purpose of this work was to investigate the nanostructural evolution of zinc oxide nanopowder compacts (average grain size of 80 nm) subjected to ultra-rapid microwave sintering at a constant holding temperature of 900°C, applying different heating rates and temperature holding times. Fine dense microstructures were obtained, with controlled grain growth (grain size from 200 to 450nm at high heating rate) when compared to those obtained by conventional sintering (grain size around 1.13µm), which leads to excessively large average final grain sizes.


1993 ◽  
Vol 8 (4) ◽  
pp. 880-884 ◽  
Author(s):  
C.A. Randall ◽  
A.D. Hilton ◽  
D.J. Barber ◽  
T.R. Shrout

This paper addresses the observed grain size with dependence of the dielectric behavior for Pb(Mg1/3Nb2/3)O3: PbTiO3 ceramics grain sizes ≥ 1.0 μm. A combined transmission electron microscopy (TEM) analysis and dielectric characterization are modeled with a modified brick wall approach. From this model, it is possible to extrapolate information such as single crystal values of dielectric maximum, Kmax, the diffuseness coefficient, δ, and the average intergranular thickness for relaxor ceramics. The calculated intergranular thickness agrees well with TEM observations, ≍2.0 nm. This semi-empirical method may be potentially useful in development work of relaxor ceramics to predict the optimized dielectric properties obtainable within microstructural restrictions.


1991 ◽  
Vol 230 ◽  
Author(s):  
S. Batra ◽  
K. Park ◽  
M. Lobo ◽  
S. Banerjee

AbstractTo successfully implement Silicon-on-Insulator (SOI) technology using polysilicon-on-oxide, it is necessary to maximize the grain size such that the active devices are entirely within very large single crystal grains. A drastic increase in grain size in polysilicon has been reported due to secondary grain growth in ultra-thin, heavily n-type doped films upon regular furnace annealing. Very little work has been undertaken, however, to study secondary grain growth during Rapid Thermal Annealing (RTA).This paper is a study of the grain growth mechanism in heavily P-doped, amorphous silicon films during RTA. Secondary grains as large as 16 μm have been obtained in 160 nm thick films after a 180 s RTA at 1200 °C, representing a grainsize- to-film-thickness-ratio of 100:1. This is the largest secondary grain size and grain-size-to-film-thickness reported in the literature. A detailed analysis of negatively charged silicon vacancies has also been employed to explain the lower activation energy (1.55 eV) of secondary grain growth compared to that of normal grain growth (2.4 eV).


2007 ◽  
Vol 558-559 ◽  
pp. 1183-1188 ◽  
Author(s):  
Peter Streitenberger ◽  
Dana Zöllner

Based on topological considerations and results of Monte Carlo Potts model simulations of three-dimensional normal grain growth it is shown that, contrary to Hillert’s assumption, the average self-similar volume change rate is a non-linear function of the relative grain size, which in the range of observed grain sizes can be approximated by a quadratic polynomial. In particular, based on an adequate modification of the effective growth law, a new analytical grain size distribution function is derived, which yields an excellent representation of the simulated grain size distribution.


2010 ◽  
Vol 62 ◽  
pp. 227-231
Author(s):  
Keijiro Hiraga ◽  
Hidehiro Yoshida ◽  
Koji Morita ◽  
Byung Nam Kim

In tetragonal zirconia, possibility is investigated of densification with finer grain sizes under the combination of doping and sintering in air. The materials used are CIP'ed compacts of 3-mol%-yttria-stabilized tetragonal zirconia (3Y-TZP) doped with a small amount of cations. For a given sintering temperature and initial density of the compacts, while the doped cations enhances densification in the latest stage of sintering, the effect is different in grain growth during densification: a doped cation tended to enhance grain growth, whereas the other cations tended to suppress grain growth. As a result, the doping of the latter cations brings about a grain size finer than that of the undoped 3Y-TZP for a given relative density.


2020 ◽  
Vol 2020 (1) ◽  
pp. 26-32
Author(s):  
K. M. Borysovska ◽  
◽  
Y.M. Podrezov ◽  
S.O. Firstov ◽  
◽  
...  

The influence of grain size on the physical yield strength of the polycrystal is considered by the method of cellular automata. The physical yield strength of the polycrystal in this model is defined as the stress at which, the plastic deformation covers the entire cross section of the sample from one edge to another. Three mechanisms of plastic deformation are considered. The first one is an initiation of plastic flow from grain to grain by dislocation pile-ups. The second one is plastic flow in different grains independently of each other under the action of external stress and the third one is intergranular slippage. Computer simulations have shown that at large grain sizes (d > 200 nm) deformation propagates from grain to grain by initiating dislocations pile-ups, since in this case pile-ups are quite powerful and have a large effect on neighboring grains. At average values of grain size (20 nm <d <200 nm) plastic deformation occurs in the grains independently of each other, and the external strain give a major influence on plastic deformation. With further reduction of the grain sizes (d <20 nm) the main mechanism of deformation is intergranular slippage. because in grains of this size are quite large image stresses that do not allow large dislocation clusters. In small grains the image forces are quite large to prevent large dislocation pile-ups formation, but the mass and volume of grain are quite small to turn or slip its under the action of external stresses. In accordance with these mechanisms, on the calculated dependence of the physical yield strength vs grain size, there are three areas with different angles of inclination in logarithmic coordinates. Keywords: yield point, grain size, Hall―Petch low.


Sign in / Sign up

Export Citation Format

Share Document