scholarly journals Coffee husk mulch on soil erosion and runoff: experiences under rainfall simulation experiment

Solid Earth ◽  
2014 ◽  
Vol 5 (2) ◽  
pp. 851-862 ◽  
Author(s):  
H. Moreno-Ramón ◽  
S. J. Quizembe ◽  
S. Ibáñez-Asensio

Abstract. The high erosion rates found in the agriculture land make valuable the use of mulches to control the soil and water losses. Coffee husk (Coffea canephora var. robusta) can be one of those mulches. This paper evaluates how to apply the mulch in order to obtain the best effectiveness. An experimental factorial design 4 × 3 × 2 with two replicates was designed in a greenhouse with a total number of 48 cases. All the samples were deposited in trays of 0.51 m2 and applied a simulated rain of 122 mm h−1 during 21 min. The factors examined were the following: four soil classes; three treatments – buried (B), surface (S) and non-residue (C) – and the presence (WC) or absence (WOC) of the soil surface crusting. The coffee husk residue (S and B treatments) reduced runoff by 10.2 and 46% respectively, soil losses by 78.3 and 88.7% and sediment concentration by 77 and 84.4%. The infiltration rate increased on average by 104 and 167%, and time to runoff by 1.58 and 2.07 min respectively. Coffee husk is an efficient mulch to reduce the soil and water losses, although it could not completely cushion the influence of crust.

2014 ◽  
Vol 6 (1) ◽  
pp. 1127-1153
Author(s):  
H. Moreno-Ramón ◽  
S. J. Quizembe ◽  
S. Ibáñez-Asensio

Abstract. The high erosion rates found in the agriculture land make valuable the use of mulches to control the soil and water losses. Coffee husk (Coffee canephora var. robusta) can be one of those mulches. This paper evaluates how to apply the mulch in order to obtain, with the same doses, the best effectiveness. An experimental factorial design 4 × 3 × 2 with two replicates was designed in a greenhouse with a total amount of 48 treatments. All the samples were deposited in trays of 0.51 m2 and applied a simulated rain of 122 mm h−1 during 21 min. The factors examined were: four soil classes; three treatments: buried (B), surface (S) and non-residue (C), and the presence (WC) or absence (WOC) of the soil surface crusting. The coffee husk residue (S and B treatments) reduced runoff by 10.2% and 46% respectively, soil losses by 78.3% and 88.7% and sediment concentration by 77% and 84.4%. The infiltration rate increased on average by 104% and 167%, and time to runoff by 1.58 and 2.07 min respectively. The coffee husk mulch (S and B) avoided the influence of crust. Coffee husk is an efficient mulch to reduce the soil and water losses.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 824 ◽  
Author(s):  
Artemi Cerdà ◽  
Oren Ackermann ◽  
Enric Terol ◽  
Jesús Rodrigo-Comino

Due to the reduction in the prices of oranges on the market and social changes such as the ageing of the population, traditional orange plantation abandonment in the Mediterranean is taking place. Previous research on land abandonment impact on soil and water resources has focused on rainfed agriculture abandonment, but there is no research on irrigated land abandonment. In the Valencia Region—the largest producer of oranges in Europe—abandonment is resulting in a quick vegetation recovery and changes in soil properties, and then in water erosion. Therefore, we performed rainfall simulation experiments (0.28 m2; 38.8 mm h−1) to determine the soil losses in naveline orange plantations with different ages of abandonment (1, 2, 3, 5, 7 and 10 years of abandonment) which will allow for an understanding of the temporal changes in soil and water losses after abandonment. Moreover, these results were also compared with an active plantation (0). The results show that the soils of the active orange plantations have higher runoff discharges and higher erosion rates due to the use of herbicides than the plots after abandonment. Once the soil is abandoned for one year, the plant recovery reaches 33% of the cover and the erosion rate drops one order of magnitude. This is related to the delay in the runoff generation and the increase in infiltration rates. After 2, 3, 5, 7 and 10 years, the soil reduced bulk density, increase in organic matter, plant cover, and soil erosion rates were found negligible. We conclude that the abandonment of orange plantations reduces soil and water losses and can serve as a nature-based solution to restore the soil services, goods, and resources. The reduction in the soil losses was exponential (from 607.4 g m−2 in the active plot to 7.1 g m−2 in the 10-year abandoned one) but the water losses were linear (from 77.2 in active plantations till 12.8% in the 10-year abandoned ones).


Soil Research ◽  
2016 ◽  
Vol 54 (2) ◽  
pp. 154 ◽  
Author(s):  
Artemi Cerdà ◽  
Óscar González-Pelayo ◽  
Antonio Giménez-Morera ◽  
Antonio Jordán ◽  
Paulo Pereira ◽  
...  

Soil and water losses due to agricultural mismanagement are high and non-sustainable in many orchards. An experiment was set up with rainfall simulation at 78 mm h–1 over 1 hour on 20 paired plots of 2 m2 (bare and straw covered) in new persimmon plantations in Eastern Spain. Effects of straw cover on the control of soil and water losses were assessed. An addition of 60% straw cover (75 g m–2) resulted in delayed ponding and runoff generation and consequently reduced water losses from 60% to 13% of total rainfall. The straw cover reduced raindrop impact and thus sediment detachment from 1014 to 47 g plot–1 h–1. The erosion rate was reduced from 5.1 to 0.2 Mg ha–1 h–1. The straw mulch was found to be extremely efficient in reducing soil erosion rates.


Solid Earth ◽  
2017 ◽  
Vol 8 (2) ◽  
pp. 281-290 ◽  
Author(s):  
Linhua Wang ◽  
Bo Ma ◽  
Faqi Wu

Abstract. Soil and water losses in agriculture are major environmental problems worldwide, especially on the Loess Plateau, China. Summer fallow management may help to control soil erosion and conserve water. This study investigated the effects of wheat stubble on runoff, infiltration, and soil loss in laboratory plots under simulated rainfall. The treatments comprised wheat stubble cover (WS) and traditional plowing (TP) in runoff plots (4.0 m  ×  1.0 m) with three slope gradients (5, 10, and 15°) under simulated rainfall at 80 mm h−1 for 1 h. The runoff volume from WS plots was significantly less than that from TP. The runoff reduction with WS ranged from 91.92 to 92.83 % compared with TP. The runoff rates varied with the runoff volume in the same manner. The infiltration amount was higher with WS (94.8–96.2 % of rainwater infiltrated) than TP (35.4–57.1 %). The sediment concentration was significantly lower with WS than TP. Compared with TP (304.31–731.23 g m−2), the sediment losses were reduced dramatically in WS (2.41–3.78 g m−2) and the sediment loss slightly increased with slope; however, it was greatly increased as slope increased in TP. These results revealed that the stubble cover was the main factor reducing runoff and sediment losses and improving infiltration and that stubble showed a great potential to control erosion and conserve soil and water resources during the summer fallow period in the Loess Plateau region.


Author(s):  
Tomasz Stańczyk ◽  
Anna Baryła

Abstract In the study we evaluated spatial and quantitative changes in soil surface microtopography to describe water erosion process under simulated rain with use of a non-contact optical 3D scanner. The experiment was conducted in two variants: with and without drainage layer. Two clay soils collected from farmlands from the catchment of lake Zgorzała (Warsaw) were investigated. Six tests of simulated rain were applied, with 55 mm·h−1. The surface roughness and microrelief were determined immediately after every 10 min of rainfall simulation by 3D scanner. The volume of surface and underground runoff as well as soil moisture were measured. The surface points coordinates obtained while scanning were interpolated using natural neighbour method and GIS software to generate Digital Elevation Models (DEM) with a 0.5 mm resolution. Two DEM-derived surface roughness indices: Random Roughness (RR) and Terrain Ruggedness Index (TRI) were used for microrelief description. Calculated values of both roughness factors have decreased with time under the influence of rainfall in all analyzed variants. During the sprinkling the moisture of all samples had been growing rapidly from air-dry state reaching values close to the maximum water capacity (37–48% vol.) in 20–30 min. Simultaneously the intensity of surface runoff was increasing and cumulative runoff value was: 17–35% for variants with drainage and 72–83% for the variants without drainage, relative to cumulative rainfall. The observed soil surface elevation changes were associated with aggregates decomposition, erosion and sedimentation, and above all, with a compaction of the soil, which was considered to be a dominant factor hindering the assessment of the erosion intensity of the of the scanned surface.


Author(s):  
Artemi Cerdà ◽  
Iván Franch-Pardo ◽  
Agata Novara ◽  
Srikanta Sannigrahi ◽  
Jesús Rodrigo-Comino

AbstractThe main goal of this research was to conduct a biophysical, economic, social, and perception-based approach to foresee the solutions that could be used to mitigate the soil loss problem cost-effectively in “La Ribera del Xúquer” district (Valencia Region, Spain). To achieve these goals, a farmer perception survey was carried out, and an assessment of the biophysical impact of catch crops on soil organic matter, bulk density, steady-state infiltration rate (double-ring infiltrometer) and runoff generation, and soil erosion (rainfall simulation experiments) was carried out in 2016. For the biophysical approach, two paired plots, i.e., catch crops vs. glyphosate herbicide treatment (in advance, control plot), were selected under clementine citrus production. The results show that soil organic matter increased from 1.14 to 1.63%, and bulk density decreased from 1.47 to 1.27 g cm−3 after 10 years of treatments using catch crops. They also facilitated higher infiltration rates from 16.7 to 171 mm h−1 and a delay in runoff generation from 149 to 654 s for control and catch crop plots. Both runoff rates (from 50.6 to 3.1%) and soil erosion (from 3.9 to 0.04 Mg ha−1 h−1) were reduced once the catch crops were deployed in the field. After surveying (2018–2019), farmers stated the use of catch crops as a speck of dirt and a cause of possible loss of reputation when used. Moreover, farmers (N = 73) would accept the catch crops as an effective nature-based alternative only if a subsidy of 131.17€ ha−1 would be paid. The survey results also demonstrated that the farmers' community would see catch crop more as a benefit for the planet's health and society. Few constraints, such as ageing of the farmers’ population, lack of education and negative perception for other management factors, are the critical detrimental factors for adopting catch crops as a nature-based solution to reduce soil and water losses. There is a need for an effective agrarian extension service to change the fate of the current agriculture and achieve sustainability by adopting new management strategies in contemporary agricultural practices.


2016 ◽  
Vol 37 (3) ◽  
pp. 1155 ◽  
Author(s):  
Wander Cardoso Valim ◽  
Elói Panachuki ◽  
Dorly Scariot Pavei ◽  
Teodorico Alves Sobrinho ◽  
Wilk Sampaio Almeida

The cultivation of sugarcane uses different cropping systems that result in varying quantities of crop waste, this may influence soil erosion. The objective of this study was to evaluate the loss of soil and water, the infiltration rate, and soil surface roughness in an area cultivated with sugarcane (Saccharum spp.). Six treatments with different levels of plant waste were evaluated: sugarcane without plant waste; sugarcane with 4.0 Mg ha-1 of waste; sugarcane with 8.0 Mg ha-1 of waste; sugarcane with 12.0 Mg ha-1 of waste; sugarcane with 16.0 Mg ha-1 of waste; and burned sugarcane. The treatments were arranged in a randomized block design with four replications, totalling 24 experimental plots. As soil depth increased, there is reduction in macroporosity, total soil porosity, organic carbon content, mean geometric diameter and weighted mean diameter of the soil aggregates, whereas the bulk density of the soil displays the opposite trend. The presence of sugarcane waste on the soil surface increases the time required for the initiation of surface runoff. Sugarcane waste does not alter soil surface roughness, and at the minimum amount of waste administered (4 Mg ha-1) reduces losses of soil and water and increases the infiltration rate. The lack of soil surface coverage after harvesting the sugarcane contributes to soil and water loss, and reduces the rate of stable infiltration of water into the soil.


Biologia ◽  
2009 ◽  
Vol 64 (3) ◽  
Author(s):  
Artemi Cerdà ◽  
Martin Jurgensen ◽  
Merche Bodi

AbstractAnts can play a key role in the erosion processes on agriculture land by modifying soil properties and increasing macropore flow. Ants are abundant in organically-managed orchards in the Mediterranean region due to climate conditions, no-till practices, no pesticide use, and the resulting vegetation cover. In order to determine the effect of ants on soil and water losses from these orchards growing on moderately-sloped land (4–8%), forty 1.0 m2 plots (20 with ants mounts and 20 without ants — controls) were established during the summer of 2007. A rainfall simulator was used to apply 78 mm of water to each plot over a one-hour period, equivalent to a 20-year return-period thunderstorm. Runoff was collected at 1-minute intervals and sediment concentration measured every 10 minutes. Sediment concentrations were 300% higher on plots with ant mounds, but runoff rates were similar to the plots without ants. Average soil erosion rates averaged 41 kg ha−1 h−1 on the ant plots and 13 kg ha−1 h−1 on the control plots. The low erosion rates are due to the effect of the vegetation and litter cover in this organically-managed soil, which were little impacted by ant activity at the pedon scale.


2020 ◽  
Vol 1000 (1000) ◽  
Author(s):  
Adam Pamudji Rahardjo

 Infiltration which occurs on slope has a specific behavior that can be parameterized. One of the reasons is because the slope generates less ponding on the sloping soil surface. This condition affects infiltration rate and surface runoff proportion of water from any kind of rainfall distribution in time. Since surface runoff tends to be higher, erosion rate is also to be higher on slope. The slope steepness is the most important parameter of a slope. In this study, the effect of slope steepness on infiltration capacity and erosion rate of Mount Merapi bare slope material were tested in a laboratory using rainfall simulator. Three values of slope steepness of 36%, 47%, and 58% were used. The rainfall intensity was set constant and was found has rate of 116,312 mm/hour. The infiltration rate was measured by volumetric balance principle and the erosion rates were measured by collecting the eroded grains at the downstream end tank. Infiltration rate was evaluated by using Horton method and the average erosion were analyzed from the eroded grain data for each test. After fitting the recorded infiltration rate data to the Horton equation, the infiltration capacity was obtained. The results were the relationship between slope steepness and the affected the infiltration capacity and erosion for each test. Infiltration capacity is found to increase and the decrease with the increase of slope steepness while erosion rate is found to increase on the steeper slope. The increase of erosion range is between 15% to 33% for each 1o increase of slope steepness. In addition, polynomial and exponential equations were developed to express the relationship between slope steepness and infiltration capacity and also the erosion rate.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2856
Author(s):  
Judit Alexandra Szabó ◽  
Csaba Centeri ◽  
Boglárka Keller ◽  
István Gábor Hatvani ◽  
Zoltán Szalai ◽  
...  

Soil erosion is a complex, destructive process that endangers food security in many parts of the world; thus, its investigation is a key issue. While the measurement of interrill erosion is a necessity, the methods used to carry it out vary greatly, and the comparison of the results is often difficult. The present study aimed to examine the results of two rainfall simulators, testing their sensitivity to different environmental conditions. Plot-scale nozzle type rainfall simulation experiments were conducted on the same regosol under both field and laboratory conditions to compare the dominant driving factors of runoff and soil loss. In the course of the experiments, high-intensity rainfall, various slope gradients, and different soil surface states (moisture content, roughness, and crust state) were chosen as the response parameters, and their driving factors were sought. In terms of the overall erosion process, the runoff, and soil loss properties, we found an agreement between the simulators. However, in the field (a 6 m2 plot), the sediment concentration was related to the soil conditions and therefore its hydrological properties, whereas in the laboratory (a 0.5 m2 plot), slope steepness and rainfall intensity were the main driving factors. This, in turn, indicates that the design of a rainfall simulator may affect the results of the research it is intended for, even if the differences occasioned by various designs may be of a low order.


Sign in / Sign up

Export Citation Format

Share Document