scholarly journals Co, Cr and Ni contents in soils and plants from a serpentinite quarry

2014 ◽  
Vol 6 (2) ◽  
pp. 3361-3391
Author(s):  
M. Lago-Vila ◽  
D. Arenas-Lago ◽  
A. Rodríguez-Seijo ◽  
M. L. Andrade Couce ◽  
F. A. Vega

Abstract. Several soils developed on the former serpentinite quarry of Penas Albas (Moeche, Galicia, NW Spain) were studied, together with the vegetation growing spontaneously over them. The aim of this work was to identify the bioavailability of heavy metals and to evaluate the potential of spontaneous vegetation for the phytoremediation and/or phytostabilisation of these areas. The pH of the soils ranges from neutral to basic, with very low organic matter and nitrogen contents. There are imbalances between exchangeable cations that can strongly limit plant production. Moreover, in all of the soils there are high levels of Co, Cr and Ni (> 70, > 1500, and > 1325 mg kg-1, respectively). They exceed the intervention limits indicated in different guides. Different soil extractions were performed in order to evaluate bioavailability. CaCl2 0.01 M is the most effective extraction reagent, although the reagent that best predicts plant availability is the mixture of low molecular weight organic acids. Festuca rubra, L. is the spontaneous plant growing in the soils that accumulates the highest amount of the metals, both in shoot and roots. Festuca also has the highest translocation factor values, although they are only > 1 for Cr. The bioconcentration factor is > 1 in all of the cases, except in the shoot of Juncus sp. for Co and Ni. The results indicate that Festuca is a phytostabilizer of Co and Ni and an accumulator of Cr, while Juncus sp. is suitable for phytostabilization. Both of the studied species contribute towards the phytostabilisation of the soils and their recovery, improving their characteristics and making it possible to start planting other species.

Solid Earth ◽  
2015 ◽  
Vol 6 (1) ◽  
pp. 323-335 ◽  
Author(s):  
M. Lago-Vila ◽  
D. Arenas-Lago ◽  
A. Rodríguez-Seijo ◽  
M. L. Andrade Couce ◽  
F. A. Vega

Abstract. The former serpentinite quarry of Penas Albas (Moeche, Galicia, NW Spain) left behind a large amount of waste material scattered over the surrounding area, as well as tailing areas. In this area several soils were studied together with the vegetation growing spontaneously over them with the aim of identifying the bioavailability of heavy metals. The potential of spontaneous vegetation for phytoremediation and/or phytostabilization was evaluated. The pH of the soils ranges from neutral to basic, with very low organic matter and nitrogen contents. There are imbalances between exchangeable cations like potassium (K) and calcium (Ca), mainly due to high magnesium (Mg) content that can strongly limit plant production. Moreover, in all of the studied soils there are high levels of cobalt (Co), chromium (Cr) and nickel (Ni) (>70, >1300 and >1300 mg kg−1, respectively). They exceed the intervention limits indicated by soil guideline values. Different soil extractions were performed in order to evaluate bioavailability. CaCl2 0.01 M is the most effective extraction reagent, although the reagent that best predicts plant availability is a mixture of low molecular weight organic acids. Festuca rubra, L. is the spontaneous plant growing in the soils that accumulates the highest amount of the metals, both in shoot and roots. Festuca also has the highest translocation factor values, although they are only >1 for Cr. The bioconcentration factor is >1 in all of the cases, except in the shoot of Juncus sp. for Co and Ni. The results indicate that Festuca is a phytostabilizer of Co and Ni and an accumulator of Cr, while Juncus sp. is suitable for phytostabilization.


2016 ◽  
Vol 58 (2) ◽  
pp. 7-19 ◽  
Author(s):  
Małgorzata Wierzbicka ◽  
Maria Pielichowska ◽  
Agnieszka Abratowska ◽  
Bogusław Wiłkomirski ◽  
Irena Wysocka ◽  
...  

AbstractBiscutella laevigataL. is known as a Tl hyperaccumulator. In PolandBiscutella laevigataoccurs in the Tatra Mts (Western Carpathians) and on the calamine waste heap in Bolesław near Olkusz (Silesian Upland). The purpose of this work was to evaluate whether plants of both populations were able to accumulate an elevated amount of thallium in their tissues. The plants were cultivated in calamine soil in a glasshouse for a season and studied at different ages – from 2-week-old seedlings to 10-month-old adults. Additionally, the plants were grown for ten weeks in calamine soil with EDTA to enhance Tl bioavailability. The total content of Tl in plant tissues after digestion was determined by ICP-MS, whereas its distribution in leaves was studied by LA-ICP-MS. Of the total content of Tl in the soil in the range of (15.2–66.7) mg∙kg−1d.m., only (1.1–2.1) mg∙kg−1d.m. was present in a bioavailable form. The mean content in all the plants grown on the soil without EDTA was 98.5 mg∙kg−1d.m. The largest content was found in leaves – 164.9 mg∙kg−1d.m. (max. 588.2 mg∙kg−1d.m.). In the case of plants grown on the soil enriched with EDTA, the mean content in plants increased to 108.9 mg∙kg−1d.m., max. in leaves – 138.4 mg∙kg−1d.m. (max. 1100 mg∙kg−1d.m.). The translocation factor was 6.1 in the soil and 2.2 in the soil with EDTA; the bioconcentration factor amounted to 10.9 and 5.8, respectively. The plants from both populations did not contain a Tl amount clearly indicating hyperaccumulation (100–500 mg∙kg−1d.m.), however, high (>1) translocation and bioconcentration factors suggest such an ability. It is a characteristic species-wide trait;B. laevigataL. is a facultative Tl hyperaccumulator. The largest Tl amount was located at the leaf base, the smallest at its top. Thallium also occurred in trichomes, which was presented for the first time; in this way plants detoxify Tl in the above-ground parts. Leaves were much more hairy in the Bolesław plants. This is an adaptation for growth in the extreme conditions of the zinc-lead waste heap with elevated Tl quantity.


2021 ◽  
Vol 19 (4) ◽  
pp. 282-291
Author(s):  
Jessica O. Tablang ◽  
◽  
Florenda B. Temanel ◽  
Ron Patrick C. Campos ◽  
Helen C. Ramos ◽  
...  

Lead (Pb) has become one of the most common heavy metal contaminants, demanding research on economical remediation approaches with minimal ecological impacts. Pepper elder (Peperomia pellucida) is a fast-growing plant that can be a candidate for bioaccumulation and phytoremediation. In this study, the lead bioaccumulation of P. pellucida was assessed by determining the growth response and absorptive capacity of the plant. Plants were grown in hydroponic solution spiked with 500 mg/L of Pb for 28 days. Growth response, absorptive capacity and tolerance of plants grown in contaminated nutrient solution were determined in comparison with control plants. After 28 days of exposure, lead phytotoxicity symptoms such as wilting, chlorosis and necrosis were observed on some plants. The control plants recorded 3.08 g total dry weight (DW) compared to the 1.35 g in Pb-contaminated plants. The tolerance index (TI) of P. pellucida was at 43.40%. The plants were able to absorb lead, with the concentration of lead in the roots (158.6 µg/g) being greater than the concentration of the metal in the shoots (43.2 µg/g). Meanwhile, bioconcentration factor (BCF) and translocation factor (TF) values were recorded at 0.40 and 0.27, respectively. BCF criterion indicates that the plant is not suitable for phytoextraction, but TF value shows that the plant can be a potential excluder. The findings of the study show that P. pellucida accumulated considerable amount of lead within its tissues, indicating that the plants may be further exploited for their capacity to absorb heavy metals by tweaking several factors that may affect its bioaccumulation ability.


2021 ◽  
Vol 27 (3) ◽  
pp. 199-212
Author(s):  
Guido Sarmiento-Sarmiento ◽  
◽  
Shadai Febres-Flores ◽  

Lead (Pb) contamination is an environmental problem that deteriorates the quality of agricultural soils; therefore, it is a priority to evaluate remediation strategies for its recovery. The aim of this research was to evaluate the effect of sunflower (Helianthus annuus) and vermicompost in the remediation of agricultural soils artificially contaminated with Pb. The treatments studied were: T1 (soil with Pb, vermicompost and sunflower), T2 (soil with Pb and vermicompost), T3 (soil with Pb and sunflower) and T4 (soil with Pb). The initial Pb value in the soil was 16.05 ppm, and 105 ppm Pb were added by dissolving Pb(NO3)2, reaching a concentration of 121.05 ppm as the initial level, higher than the national environmental quality standard (EQS) for agricultural soils (70 ppm Pb). All treatments reduced the Pb concentration in the soil below the EQS. T2 stood out by achieving a Pb recovery of 81.21 %. The Pb bioconcentration factor (BF) in the aerial part and roots of sunflower plants (T1 and T3) registered values of less than one, acting as an exclusive plant species. According to the Pb translocation factor (TF), sunflower in the presence of vermicompost (T1) behaved as a Pb phytostabilizing plant (TF < 1), and in the absence of vermicompost (T3) it proved to be a Pb phytoextractor (TF > 1).


Land ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1253
Author(s):  
Encarna Merlo ◽  
Antonio J. Mendoza-Fernández ◽  
Esteban Salmerón-Sánchez ◽  
Fabián Martínez-Hernández ◽  
Andrea Ortiz-Úbeda ◽  
...  

Unusual dolomite substrates present a phenomenon known as dolomitophily, which refers to the specificity of the flora that grows on them. Within the dolomitic flora, one of the most widespread plants in Spain is the characteristic species Pterocephalus spathulatus (Lag.) Coult., which forms whitish prostrate thymes. The present study focused on the knowledge about the ionome (or elementome) of a characteristic dolomite species and some of its applications, both in terms of its nutritional behaviour and in determining the factors that favour the rich and rare flora growing on dolomitic soils. Soil, foliar, stem and root samples of the species studied were collected from different locations in the south of Spain. The samples were analysed to determine their mineral composition. The Bioconcentration Factor (BCF) and the Translocation Factor (TF) were calculated, relating the values of the mineral contents in the soil, both total and phytoavailable, to the values from the foliar, root and stem samples. It was found that this species was able to accumulate some elements, including B, Cr, Cu, Ni, Ti, Tl and Zn, which can be phytotoxic in high concentrations, and are considered to be some of the main toxic metals in soils. In addition, it was observed that the plant can accumulate metals in the stem and leaves (TF), thus proving that it is capable of transporting them from the root to the aerial part of the plant. The data obtained may indicate that other species in the plant community may possess this bioindicator or even phytoremediation capacity.


Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1537
Author(s):  
Manuel Teodoro ◽  
Rafael Clemente ◽  
Ermengol Ferrer-Bustins ◽  
Domingo Martínez-Fernández ◽  
Maria Pilar Bernal ◽  
...  

Two Poaceae species, Agrostis capillaris and Festuca rubra, were selected for their potential as phytostabilizing plants in multicontaminated soils. These species are resistant to contamination and maintain high concentrations of contaminants at the root level. Nanoscale zero-valent iron (nZVI) is an engineered nanomaterial with the ability to stabilize metal(loid)s in soils; its potential toxicological effects in the selected species were studied in a germination test using: (i) control variant without soil; (ii) soil contaminated with Pb and Zn; and (iii) contaminated soil amended with 1% nZVI, as well as in an hydroponic experiment with the addition of nZVI 0, 25, 50 and 100 mg L−1. nZVI had no negative effects on seed germination or seedling growth, but was associated with an increase in shoot growth and reduction of the elongation inhibition rate (root-dependent) of F. rubra seedlings. However, applications of nZVI in the hydroponic solution had no effects on F. rubra but A. capillaris developed longer roots and more biomass. Increasing nZVI concentrations in the growing solution increased Mg and Fe uptake and reduced the Fe translocation factor. Our results indicate that nZVI has few toxic effects on the studied species.


Author(s):  
Faisal Hamzah

In this study, the concentrations of three kinds of heavy metals, namely Pb, Zn, and Cu from 3 species of mangrove that grow in Muara Angke were measured and analyzed. Our result showed that substrate of mangrove ecosystem in Muara Angke was dominated by clay (30.5% - 62.4%), silt (21.7% -35.6%), and sand (2% -39.5%). The heavy metals accumulation in roots is higher than in sediment, water and leaves with concentration of Zn as the highest. Bioconcentration Factor (BCF; content ratio of heavy metal concentrations in roots or leaves and sediment) and Translocation Factor (TF; ratio of heavy metal concentrations in leaves and roots) of non-essential heavy metals (Pb) is higher in leaves than in roots, but for essential heavy metals (Zn and Cu), the BCF and TF was higher in roots than in leaves. TF values for heavy metals Pb, Cu, and Zn were 0.98-2.59, 0.17-0.51, and 0.52-0.86, respectively. The values of root BCF of those three heavy metals were 0.71-3.17, 0.27-0.74, and 0.95-1.53, while the values of leaf BCF were 1.84-3.45, 0.07-0.34, and 0.72-1.19, respectively. Furthermore, by calculating the phytoremediation (FTD), i.e. the difference between BCF and TF, it is obtained that Sonneratia caseolaris and Avicennia marina can be used in phytoremidiation, with leaves and roots FTD of 1.93 and 2.09, respectively for Sonneratia caseolaris and 1.93 and 1.98 for Avicennia marina.Keywords: heavy metals, mangroves, phytoremidiation, Muara Angke, bioconcentration factor, translocation factor


2016 ◽  
Vol 8 (1) ◽  
pp. 71-79 ◽  
Author(s):  
F. B. Nasir ◽  
S. Islam ◽  
G. M. Munna ◽  
S. Ray ◽  
R. Awal

Phytoremediation of heavy metal rich soil has become a practical approach nowadays. Though this method is very promising, it requires long time for complete remediation of contaminated soil. Assortment of appropriate plant for specific heavy metal is very important to decontaminate soil within short period of time. The present study was conducted on Amaranthus gangeticus, to find out its potential to remove arsenic (As) from soil within short period of time. Phytoremediation trail was followed by growing plants in varying concentrations of As contaminated soil and subsequently one month of plant growing period it removed 72%-81% of the total soil As. This species accomplish maximum accumulation capacity of 17934 mg/Kgin shoots and store 72%-78% metal in aerial parts. Several parameters that have an influence on phytoremediation potential such as time, concentration, bioconcentration factor (BCF) and translocation factor (TF) were also calculated to investigate its appropriateness as effective hyperaccumulator.


Author(s):  
Jin-Mei Zhou ◽  
Zhong-Cheng Jiang ◽  
Xiao-Qun Qin ◽  
Lian-Kai Zhang ◽  
Qi-Bo Huang ◽  
...  

This study experimentally investigated heavy metal removal and accumulation in the aquatic plant Eichhornia crassipes. Pb, Zn, Cd, and Mn concentrations, plant morphology, and plant functional groups were analyzed. Eichhornia crassipes achieved high removal efficiency of Pb and Mn from karst water (over 79.5%), with high proportion of Pb, Zn, and Cd absorption occurring in the first eight days. The highest removal efficiencies were obtained at initial Pb, Zn, Cd, and Mn concentrations of 1 mg/L, 2 mg/L, 0.02 mg/L, and 0.2 mg/L, respectively. Eichhornia crassipes exhibited a high bioconcentration factor (Mn = 199,567 > Pb = 19,605 > Cd = 3403 > Zn = 1913) and a low translocation factor (<1). The roots accumulated more Pb, Zn, Cd, and Mn than the stolons and leaves due to the stronger tolerance of roots. The voids, stomas, air chambers, and airways promoted this accumulation. Pb, Cd, Zn, and Mn likely exchanged with Mg, Na, and K through the cation exchange. C≡C, C=O, SO42−, O-H, C-H, and C-O played different roles during uptake, which led to different removal and accumulation effects.


2016 ◽  
Vol 27 (1) ◽  
pp. 8-14 ◽  
Author(s):  
Sylwia Gołda ◽  
Jolanta Korzeniowska

AbstractThe aim of the study was to compare the toleration of Poa pratensis, Lolium perenne and Festuca rubra to cadmium contamination as well as the phytoremediation potential of these three species of grass. The pot experiment was conducted in four replications in pots containing 2.0 kg of soil. The soil was contaminated with three doses of Cd – 30, 60 and 120 mg·kg−1. After two months, the aerial parts of plants were harvested. The roots were dug up, brushed off from the remaining soil and washed with water. The biomass was defined and the cadmium concentration was determined in aerial parts and roots. The phytoremediation potential of grasses was evaluated using biomass of grasses, bioaccumulation factor (BF) and translocation factor (TF). All three tested species of grasses had TF < 1 and BF-root > 1. It indicates their suitability for phytostabilisation and makes them unsuitable for phytoextraction of Cd from the soil. Comparing the usefulness of the tested grasses for phytoremediation has shown that the phytostabilisation potential of P. pratensis was lower than that of L. perenne and F. rubra. P. pratensis was distinguished by higher TF, smaller root biomass and lower tolerance for Cd excess in the soil in comparison with the two other test grasses. At the same time, L. perenne was characterised by the smallest decrease in biomass and the largest Cd accumulation in roots at the lowest dose of Cd. It indicates good usefulness for phytostabilisation of soils characterised by a relatively small pollution by cadmium.


Sign in / Sign up

Export Citation Format

Share Document