scholarly journals Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change

2020 ◽  
Vol 14 (9) ◽  
pp. 3155-3174 ◽  
Author(s):  
Eleanor J. Burke ◽  
Yu Zhang ◽  
Gerhard Krinner

Abstract. Permafrost is a ubiquitous phenomenon in the Arctic. Its future evolution is likely to control changes in northern high-latitude hydrology and biogeochemistry. Here we evaluate the permafrost dynamics in the global models participating in the Coupled Model Intercomparison Project (present generation – CMIP6; previous generation – CMIP5) along with the sensitivity of permafrost to climate change. Whilst the northern high-latitude air temperatures are relatively well simulated by the climate models, they do introduce a bias into any subsequent model estimate of permafrost. Therefore evaluation metrics are defined in relation to the air temperature. This paper shows that the climate, snow and permafrost physics of the CMIP6 multi-model ensemble is very similar to that of the CMIP5 multi-model ensemble. The main differences are that a small number of models have demonstrably better snow insulation in CMIP6 than in CMIP5 and a small number have a deeper soil profile. These changes lead to a small overall improvement in the representation of the permafrost extent. There is little improvement in the simulation of maximum summer thaw depth between CMIP5 and CMIP6. We suggest that more models should include a better-resolved and deeper soil profile as a first step towards addressing this. We use the annual mean thawed volume of the top 2 m of the soil defined from the model soil profiles for the permafrost region to quantify changes in permafrost dynamics. The CMIP6 models project that the annual mean frozen volume in the top 2 m of the soil could decrease by 10 %–40 %∘C-1 of global mean surface air temperature increase.

2020 ◽  
Author(s):  
Eleanor J. Burke ◽  
Yu Zhang ◽  
Gerhard Krinner

Abstract. Permafrost is an important component of the Arctic system and its future fate is likely to control changes in northern high latitude hydrology and biogeochemistry. Here we evaluate the permafrost dynamics in the global models participating in the Coupled Model Intercomparison Project (present generation – CMIP6; previous generation – CMIP5) along with the the sensitivity of permafrost to climate change. Whilst the northern high latitude air temperatures are relatively well simulated by the climate models, they do introduce a bias into any subsequent model estimate of permafrost. Therefore evaluation metrics are defined in relation to the air temperature. This paper shows the climate, snow and permafrost physics of the CMIP6 multi-model ensemble is very similar to that of the CMIP5 multi-model ensemble. The main difference is that a small number of models have demonstrably better snow insulation in CMIP6 than in CMIP5 which improves their representation of the permafrost extent. The simulation of maximum summer thaw depth does not improve between CMIP5 and CMIP6. We suggest that models should include a better resolved and deeper soil profile as a first step towards addressing this. We use the annual mean thawed volume of the top 2 m of the soil defined from the model soil profiles for the permafrost region to quantify changes in permafrost dynamics. The CMIP6 models suggest this is projected to increase by 20–30 %/°C of global mean temperature increase. Under climate change and in equilibrium this may result in an additional 80–120 Gt C/°C of permafrost carbon becoming vulnerable to decomposition.


2021 ◽  
Vol 17 (1) ◽  
pp. 63-94 ◽  
Author(s):  
Bette L. Otto-Bliesner ◽  
Esther C. Brady ◽  
Anni Zhao ◽  
Chris M. Brierley ◽  
Yarrow Axford ◽  
...  

Abstract. The modeling of paleoclimate, using physically based tools, is increasingly seen as a strong out-of-sample test of the models that are used for the projection of future climate changes. New to the Coupled Model Intercomparison Project (CMIP6) is the Tier 1 Last Interglacial experiment for 127 000 years ago (lig127k), designed to address the climate responses to stronger orbital forcing than the midHolocene experiment, using the same state-of-the-art models as for the future and following a common experimental protocol. Here we present a first analysis of a multi-model ensemble of 17 climate models, all of which have completed the CMIP6 DECK (Diagnostic, Evaluation and Characterization of Klima) experiments. The equilibrium climate sensitivity (ECS) of these models varies from 1.8 to 5.6 ∘C. The seasonal character of the insolation anomalies results in strong summer warming over the Northern Hemisphere continents in the lig127k ensemble as compared to the CMIP6 piControl and much-reduced minimum sea ice in the Arctic. The multi-model results indicate enhanced summer monsoonal precipitation in the Northern Hemisphere and reductions in the Southern Hemisphere. These responses are greater in the lig127k than the CMIP6 midHolocene simulations as expected from the larger insolation anomalies at 127 than 6 ka. New synthesis for surface temperature and precipitation, targeted for 127 ka, have been developed for comparison to the multi-model ensemble. The lig127k model ensemble and data reconstructions are in good agreement for summer temperature anomalies over Canada, Scandinavia, and the North Atlantic and for precipitation over the Northern Hemisphere continents. The model–data comparisons and mismatches point to further study of the sensitivity of the simulations to uncertainties in the boundary conditions and of the uncertainties and sparse coverage in current proxy reconstructions. The CMIP6–Paleoclimate Modeling Intercomparison Project (PMIP4) lig127k simulations, in combination with the proxy record, improve our confidence in future projections of monsoons, surface temperature, and Arctic sea ice, thus providing a key target for model evaluation and optimization.


2011 ◽  
Vol 11 (1) ◽  
pp. 39-52
Author(s):  
C. M. Hall ◽  
G. Hansen ◽  
F. Sigernes ◽  
K. M. Kuyeng Ruiz

Abstract. We present a seasonal climatology of tropopause altitude for 78° N 16° E derived from observations 2007–2010 by the SOUSY VHF radar on Svalbard. The spring minimum occurs one month later than that of surface air temperature and instead coincides with the maximum in ozone column density. This confirms similar studies based on radiosonde measurements in the arctic and demonstrates downward control by the stratosphere. If one is to exploit the potential of tropopause height as a metric for climate change at high latitude and elsewhere, it is imperative to observe and understand the processes which establish the tropopause – an understanding to which this study contributes.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Vimal Mishra ◽  
Udit Bhatia ◽  
Amar Deep Tiwari

Abstract Climate change is likely to pose enormous challenges for agriculture, water resources, infrastructure, and livelihood of millions of people living in South Asia. Here, we develop daily bias-corrected data of precipitation, maximum and minimum temperatures at 0.25° spatial resolution for South Asia (India, Pakistan, Bangladesh, Nepal, Bhutan, and Sri Lanka) and 18 river basins located in the Indian sub-continent. The bias-corrected dataset is developed using Empirical Quantile Mapping (EQM) for the historic (1951–2014) and projected (2015–2100) climate for the four scenarios (SSP126, SSP245, SSP370, SSP585) using output from 13 General Circulation Models (GCMs) from Coupled Model Intercomparison Project-6 (CMIP6). The bias-corrected dataset was evaluated against the observations for both mean and extremes of precipitation, maximum and minimum temperatures. Bias corrected projections from 13 CMIP6-GCMs project a warmer (3–5°C) and wetter (13–30%) climate in South Asia in the 21st century. The bias-corrected projections from CMIP6-GCMs can be used for climate change impact assessment in South Asia and hydrologic impact assessment in the sub-continental river basins.


2013 ◽  
Vol 6 (5) ◽  
pp. 1705-1714 ◽  
Author(s):  
J. Xu ◽  
L. Zhao ◽  

Abstract. On the basis of the fifth Coupled Model Intercomparison Project (CMIP5) and the climate model simulations covering 1979 through 2005, the temperature trends and their uncertainties have been examined to note the similarities or differences compared to the radiosonde observations, reanalyses and the third Coupled Model Intercomparison Project (CMIP3) simulations. The results show noticeable discrepancies for the estimated temperature trends in the four data groups (radiosonde, reanalysis, CMIP3 and CMIP5), although similarities can be observed. Compared to the CMIP3 model simulations, the simulations in some of the CMIP5 models were improved. The CMIP5 models displayed a negative temperature trend in the stratosphere closer to the strong negative trend seen in the observations. However, the positive tropospheric trend in the tropics is overestimated by the CMIP5 models relative to CMIP3 models. While some of the models produce temperature trend patterns more highly correlated with the observed patterns in CMIP5, the other models (such as CCSM4 and IPSL_CM5A-LR) exhibit the reverse tendency. The CMIP5 temperature trend uncertainty was significantly reduced in most areas, especially in the Arctic and Antarctic stratosphere, compared to the CMIP3 simulations. Similar to the CMIP3, the CMIP5 simulations overestimated the tropospheric warming in the tropics and Southern Hemisphere and underestimated the stratospheric cooling. The crossover point where tropospheric warming changes into stratospheric cooling occurred near 100 hPa in the tropics, which is higher than in the radiosonde and reanalysis data. The result is likely related to the overestimation of convective activity over the tropical areas in both the CMIP3 and CMIP5 models. Generally, for the temperature trend estimates associated with the numerical models including the reanalyses and global climate models, the uncertainty in the stratosphere is much larger than that in the troposphere, and the uncertainty in the Antarctic is the largest. In addition, note that the reanalyses show the largest uncertainty in the lower tropical stratosphere, and the CMIP3 simulations show the largest uncertainty in both the south and north polar regions.


2011 ◽  
Vol 11 (11) ◽  
pp. 5485-5490 ◽  
Author(s):  
C. M. Hall ◽  
G. Hansen ◽  
F. Sigernes ◽  
K. M. Kuyeng Ruiz

Abstract. We present a seasonal climatology of tropopause altitude for 78° N 16° E derived from observations 2007–2010 by the SOUSY VHF radar on Svalbard. The spring minimum occurs one month later than that of surface air temperature and instead coincides with the maximum in ozone column density. This confirms similar studies based on radiosonde measurements in the arctic and demonstrates downward control by the stratosphere. If one is to exploit the potential of tropopause height as a metric for climate change at high latitude and elsewhere, it is imperative to observe and understand the processes which establish the tropopause – an understanding to which this study contributes.


2018 ◽  
Vol 8 (1) ◽  
pp. 13-24 ◽  
Author(s):  
MBOTE BETH WAMBUI ◽  
ALFRED OPERE ◽  
JOHN M. GITHAIGA ◽  
FREDRICK K. KARANJA

Wambui MB, Opere A, Githaiga MJ, Karanja FK. 2017. Assessing the impacts of climate variability and climate change on biodiversity in Lake Nakuru, Kenya. Bonorowo Wetlands 1: 13-24. This study evaluates the impacts of the raised water levels and the flooding of Lake Nakuru and its surrounding areas on biodiversity, specifically, the phytoplankton and lesser flamingo communities, due to climate change and climate variability. The study was to review and analyze noticed climatic records from 2000 to 2014. Several methods were used to ascertain the past and current trends of climatic parameters (temperature, rainfall and evaporation), and also the physicochemical characteristics of Lake Nakuru (conductivity, phytoplankton, lesser flamingos and the lake depth). These included time series analysis, and trend analysis, so the Pearson’s correlation analysis was used to show a relationship between the alterations in lake conductivity to alterations in population estimates of the lesser flamingos and the phytoplankton. Data set extracted from the Coupled Model Intercomparison Project Phase 5 (CMIP5) (IPCC Fifth Assessment Report (AR5) Atlas subset) models were subjected to time series analysis method where the future climate scenarios of near surface temperature, rainfall and evaporation were plotted for the period 2017 to 2100 (projection) for RCP2.6 and RCP8.5 relative to the baseline period 1971 to 2000 in Lake Nakuru were analysed. The results were used to evaluate the impact of climate change on the lesser flamingos and phytoplankton abundance. It was noticed that there was a raise in the mean annual rainfall during the study period (2009 to 2014) which brought the increment in the lake’s surface area from a low area of 31.8 km² in January 2010 to a high of 54.7 km² in Sept 2013, indicating an increment of 22.9 km² (71.92% surface area increment). Mean conductivity of the lake also lessened leading to the loss of phytoplankton on which flamingos feed making them to migrate. A strong positive correlation between conductivity and the lesser flamingo population was noticed signifying that low conductivity affects the growth of phytoplankton and since the lesser flamingos depend on the phytoplankton for their feed, this subsequently revealed that the phytoplankton density could be a notable predictor of the lesser flamingo occurrence in Lake Nakuru. There was also a strong positive correlation noticed between phytoplankton and the lesser flamingo population which confirms that feed availability is a key determining factor of the lesser flamingo distribution in the lake. It is projected that there would be an increment in temperatures, rainfall and evaporation for the period 2017 to 2100 under RCP2.6 and RCP8.5 relative to the baseline period 1971 to 2000 obtained from the Coupled Model Intercomparison Project phase 5 (CMIP5) multi-model ensemble. As a result, it is expected that the lake will further increment in surface area and depth by the year 2100 due to increased rainfall thereby affecting the populations of the lesser flamingos and phytoplankton, as the physicochemical factors of the lake will alter as well during the projected period.


2020 ◽  
Vol 148 (9) ◽  
pp. 3653-3680 ◽  
Author(s):  
Stephanie Fiedler ◽  
Traute Crueger ◽  
Roberta D’Agostino ◽  
Karsten Peters ◽  
Tobias Becker ◽  
...  

Abstract The representation of tropical precipitation is evaluated across three generations of models participating in phases 3, 5, and 6 of the Coupled Model Intercomparison Project (CMIP). Compared to state-of-the-art observations, improvements in tropical precipitation in the CMIP6 models are identified for some metrics, but we find no general improvement in tropical precipitation on different temporal and spatial scales. Our results indicate overall little changes across the CMIP phases for the summer monsoons, the double-ITCZ bias, and the diurnal cycle of tropical precipitation. We find a reduced amount of drizzle events in CMIP6, but tropical precipitation occurs still too frequently. Continuous improvements across the CMIP phases are identified for the number of consecutive dry days, for the representation of modes of variability, namely, the Madden–Julian oscillation and El Niño–Southern Oscillation, and for the trends in dry months in the twentieth century. The observed positive trend in extreme wet months is, however, not captured by any of the CMIP phases, which simulate negative trends for extremely wet months in the twentieth century. The regional biases are larger than a climate change signal one hopes to use the models to identify. Given the pace of climate change as compared to the pace of model improvements to simulate tropical precipitation, we question the past strategy of the development of the present class of global climate models as the mainstay of the scientific response to climate change. We suggest the exploration of alternative approaches such as high-resolution storm-resolving models that can offer better prospects to inform us about how tropical precipitation might change with anthropogenic warming.


Sign in / Sign up

Export Citation Format

Share Document