scholarly journals Changes in glacier facies zonation on Devon Ice Cap, Nunavut, detected from SAR imagery and field observations

Author(s):  
Tyler de Jong ◽  
Luke Copland ◽  
David Burgess

Abstract. Envisat ASAR WS images, verified against mass balance, ice core, ground-penetrating radar and air temperature measurements, are used to map changes in the distribution of glacier facies zones across Devon Ice Cap between 2004 and 2011. Glacier ice, saturation/percolation and pseudo dry snow zones are readily distinguishable in the satellite imagery, and the superimposed ice zone can be mapped after comparison with ground measurements. Over the study period there has been a clear upglacier migration of glacier facies, resulting in regions close to the firn line switching from being part of the accumulation area with high backscatter to being part of the ablation area with relatively low backscatter. This has coincided with a rapid increase in positive degree days near the ice cap summit, and an increase in the glacier ice zone from 71 % of the ice cap in 2005 to 92 % of the ice cap in 2011. This has significant implications for the area of the ice cap subject to meltwater runoff.

2012 ◽  
Vol 58 (207) ◽  
pp. 99-109 ◽  
Author(s):  
Seth Campbell ◽  
Karl Kreutz ◽  
Erich Osterberg ◽  
Steven Arcone ◽  
Cameron Wake ◽  
...  

AbstractWe used ground-penetrating radar (GPR), GPS and glaciochemistry to evaluate melt regimes and ice depths, important variables for mass-balance and ice-volume studies, of Upper Yentna Glacier, Upper Kahiltna Glacier and the Mount Hunter ice divide, Alaska. We show the wet, percolation and dry snow zones located below ~2700ma.s.l., at ~2700 to 3900ma.s.l. and above 3900ma.s.l., respectively. We successfully imaged glacier ice depths upwards of 480 m using 40-100 MHz GPR frequencies. This depth is nearly double previous depth measurements reached using mid-frequency GPR systems on temperate glaciers. Few Holocene-length climate records are available in Alaska, hence we also assess stratigraphy and flow dynamics at each study site as a potential ice-core location. Ice layers in shallow firn cores and attenuated glaciochemical signals or lacking strata in GPR profiles collected on Upper Yentna Glacier suggest that regions below 2800ma.s.l. are inappropriate for paleoclimate studies because of chemical diffusion, through melt. Flow complexities on Kahiltna Glacier preclude ice-core climate studies. Minimal signs of melt or deformation, and depth-age model estimates suggesting ~4815 years of ice on the Mount Hunter ice divide (3912ma.s.l.) make it a suitable Holocene-age ice-core location.


2018 ◽  
Vol 18 (16) ◽  
pp. 12345-12361 ◽  
Author(s):  
Christian M. Zdanowicz ◽  
Bernadette C. Proemse ◽  
Ross Edwards ◽  
Wang Feiteng ◽  
Chad M. Hogan ◽  
...  

Abstract. Black carbon aerosol (BC), which is emitted from natural and anthropogenic sources (e.g., wildfires, coal burning), can contribute to magnify climate warming at high latitudes by darkening snow- and ice-covered surfaces, and subsequently lowering their albedo. Therefore, modeling the atmospheric transport and deposition of BC to the Arctic is important, and historical archives of BC accumulation in polar ice can help to validate such modeling efforts. Here we present a > 250-year ice-core record of refractory BC (rBC) deposition on Devon ice cap, Canada, spanning the years from 1735 to 1992. This is the first such record ever developed from the Canadian Arctic. The estimated mean deposition flux of rBC on Devon ice cap for 1963–1990 is 0.2 mg m−2 a−1, which is at the low end of estimates from Greenland ice cores obtained using the same analytical method ( ∼ 0.1–4 mg m−2 a−1). The Devon ice cap rBC record also differs from the Greenland records in that it shows only a modest increase in rBC deposition during the 20th century. In the Greenland records a pronounced rise in rBC is observed from the 1880s to the 1910s, which is largely attributed to midlatitude coal burning emissions. The deposition of contaminants such as sulfate and lead increased on Devon ice cap in the 20th century but no concomitant rise in rBC is recorded in the ice. Part of the difference with Greenland could be due to local factors such as melt–freeze cycles on Devon ice cap that may limit the detection sensitivity of rBC analyses in melt-impacted core samples, and wind scouring of winter snow at the coring site. Air back-trajectory analyses also suggest that Devon ice cap receives BC from more distant North American and Eurasian sources than Greenland, and aerosol mixing and removal during long-range transport over the Arctic Ocean likely masks some of the specific BC source–receptor relationships. Findings from this study suggest that there could be a large variability in BC aerosol deposition across the Arctic region arising from different transport patterns. This variability needs to be accounted for when estimating the large-scale albedo lowering effect of BC deposition on Arctic snow/ice.


1997 ◽  
Vol 43 (143) ◽  
pp. 90-97 ◽  
Author(s):  
Roy M. Koerner

AbstractPoor consideration has been given in many Arctic circum-polar ice-core studies to the effect of summer snow melt on chemistry, stable-isotope concentrations and time-scales. Many of these corps are drilled close to the firn line where melt is intense. Some come from below the firn line where accumulation is solely in the form of super-imposed ice. In all cases, seasonal signals are reduced or removed and, in some, time gaps develop during periods of excessive melting which situate the drill site in the ablation zone. Consequently, cross correlations of assumed synchronous events among the cores are invalid, so that time-scales along the same cores differ between authors by factors of over 2. Many so-called climatic signals are imaginary rather than real. By reference to published analyses of cores from the superimposed ice zone on Devon Ice Cap (Koerner, 1970) and Meighen Ice Cap (Koerner and Paterson, 1974), it is shown how melt affects all the normally well-established ice-core proxies and leads to their misinterpretation. Despite these limitations, the cores can give valuable low-resolution records for all or part of the Holocene. They show that the thermal maximum in the circum-polar Arctic occurred in the early Holocene. This maximum, effected negative balances on all the ice caps and removed the smaller ones. Cooler conditions in the second half of the Holocene have caused the regrowth of these same ice caps.


1997 ◽  
Vol 24 ◽  
pp. 283-287 ◽  
Author(s):  
Vladimir N. Mikhalenko

Glaciers of both the Arctic and mid-latitude mountain systems within Eurasia have retreated intensively during the past century. Measured and reconstructed glacier mass balances show that glacier retreat began around the 1880s. The mean annual mass-balance value for 1880–1990 was −480 mm a−1 for glaciers with maritime climatic conditions, and −140 mm a−1 for continental glaciers. It can be concluded that warming in the Caucasus occurred during at least the last 60 years, according to the distribution of crystal sizes in an ice core from the Dzhantugan firn plateau. Temperatures measured in 1962 at 20 m on the Gregoriev ice cap, Tien Shan, were −4.2°C while in 1990 they were −2°C, a warming of 2.2°C over 28 years. Changes in the isotopic composition of glacier ice during the 20th century indicate recent and continuing warming in different regions of Eurasia. The δ18O records reveal an enrichment at the Gregoriev ice cap during the last 50 years, while surface temperatures at the Tien Shan meteorological station have increased 0.5°C since 1930.


2007 ◽  
Vol 51 (3) ◽  
pp. 379-389 ◽  
Author(s):  
Andrei A. Andreev ◽  
Vladimir I. Nikolaev ◽  
Dmitrii Yu. Boi’sheiyanov ◽  
Vladimir N. Petrov

SUMMARY The Vavilov Ice Cap (79°27'N, 95° 21'E) was cored during February and March of 1988. The corer passed through 457.18 m of glacier ice, 2.15 m of moraine-containing ice, and 2.28 m of underlying rocks. Structural-stratigraphical and isotope analysis show the glacier ice is of Holocene in age; the ice layer covered by frozen deposits is Pleistocene glacier ice; and the ground (ice wedge?) ice from underlying sediments was formed during the Last Interglacial. Palynological studies of this core, carried out for the first time in the Russian Arctic demonstrate that the pollen spectra have a unique pattern. It reduces the possibility of correlation between the Vavilov Ice Cape spectra and pollen spectra from other surficial deposits, because the ice retains pollen and spores brought from enormous distances. Only the upper 65 m of the core is easily dated, to the last millennium, by the presence of cereals, Plantago lanceolata, Centaurea cyanus, Cannabis pollen. That is in good agreement with the model of age distribution based upon depth. The presence of considerable amounts of Tilia cordifolia pollen, a West-European species in the upper layers suggests that summer air masses have been dominantly from the southwest during the last 500 years. The pollen data do not contradict the conclusion the Vavilov ice core is composed of a section of Holocene ice, moraine-containing ice representing the Pleistocene episode, and a ground ice formed during an earlier warm period (Last Interglacial?).


2016 ◽  
Author(s):  
Yong Chen ◽  
Xiang-Kai Li ◽  
Jing Si ◽  
Guang-Jian WU ◽  
Li-De Tian ◽  
...  

Abstract. Microorganisms are continuously blown onto the glacier snow, and thus the glacial depth profiles provide excellent geographic archives of the microbial communities. However, it is uncertain about how the microbial communities respond to the climatic and environmental changes over the glacier ice. In the present study, the live microbial density, stable isotopic ratios, 18O/16O in the precipitation, and mineral particle concentrations along the glacial depth profiles were collected from ice cores from the Muztagata glacier and the Dunde ice cap. Six bacterial 16S rRNA gene clone libraries were established from the Dunde ice core. The Muztagata ice core presented seasonal response patterns for both live and total cell density with high cell density occurring in the warming spring and summer. Both ice core data showed a frequent association of dust and microorganisms in the ice. Genera Polaromas sp., Pedobacter sp, Flavobacterium sp., Cryobacteriium sp., and Propionibacterium/Blastococcus sp. frequently appeared at the six tested ice layers, and constituted the dominant species endemic to the Dunde ice cap, whereas some genera such as Rhodoferax sp., Variovorax sp., Sphingobacterium sp., Cyanobacterium sp., Knoellia sp., and Luteolibacter sp. rarely presented in the ice. In conclusion, data present a discrete increase of microbial cell density in the warming seasons and biogeography of the microbial communities associated with the predominance of a few endemic groups in the local glacial regions. This reinforces our hypothesis of dust-borne and post-deposition being the main agents interactively controlling microbial load in the glacier ice.


2020 ◽  
Author(s):  
Zhi-Ping Zhong ◽  
Natalie E. Solonenko ◽  
Yueh-Fen Li ◽  
Maria C. Gazitúa ◽  
Simon Roux ◽  
...  

AbstractWhile glacier ice cores provide climate information over tens to hundreds of thousands of years, study of microbes is challenged by ultra-low-biomass conditions, and virtually nothing is known about co-occurring viruses. Here we establish ultra-clean microbial and viral sampling procedures and apply them to two ice cores from the Guliya ice cap (northwestern Tibetan Plateau, China) to study these archived communities. This method reduced intentionally contaminating bacterial, viral, and free DNA to background levels in artificial-ice-core control experiments, and was then applied to two authentic ice cores to profile their microbes and viruses. The microbes differed significantly across the two ice cores, presumably representing the very different climate conditions at the time of deposition that is similar to findings in other cores. Separately, viral particle enrichment and ultra-low-input quantitative viral metagenomic sequencing from ∼520 and ∼15,000 years old ice revealed 33 viral populations (i.e., species-level designations) that represented four known genera and likely 28 novel viral genera (assessed by gene-sharing networks). In silico host predictions linked 18 of the 33 viral populations to co-occurring abundant bacteria, including Methylobacterium, Sphingomonas, and Janthinobacterium, indicating that viruses infected several abundant microbial groups. Depth-specific viral communities were observed, presumably reflecting differences in the environmental conditions among the ice samples at the time of deposition. Together, these experiments establish a clean procedure for studying microbial and viral communities in low-biomass glacier ice and provide baseline information for glacier viruses, some of which appear to be associated with the dominant microbes in these ecosystems.ImportanceThis study establishes ultra-clean microbial and viral sampling procedures for glacier ice, which complements prior in silico decontamination methods and expands, for the first time, the clean procedures to viruses. Application of these methods to glacier ice confirmed prior common microbiological findings for a new ice core climate record, and provides a first window into viral genomes and their ecology from glacier ice across two time horizons, and emphasizes their likely impact on abundant microbial groups. Together these efforts provide clean sampling approaches and foundational datasets that should enable simultaneous access to an archived virosphere in glacier ice.


2017 ◽  
Author(s):  
Christian M. Zdanowicz ◽  
Bernadette C. Proemse ◽  
Ross Edwards ◽  
Wang Feiteng ◽  
Chad M. Hogan ◽  
...  

Abstract. Black carbon aerosol (BC) emitted from natural and anthropogenic sources (e.g., wildfires, coal burning) can contribute to magnify climate warming at high latitudes by darkening snow- and ice-covered surfaces, thus lowering their albedo. Modeling the atmospheric transport and deposition of BC to the Arctic is therefore important, and historical archives of BC accumulation in polar ice can help to validate such modeling efforts. Here we present a 190-year ice-core record of refractory BC (rBC) deposition on Devon ice cap, Canada, spanning calendar years 1810–1990, the first such record ever developed from the Canadian Arctic. The estimated mean deposition flux of rBC on Devon ice cap for 1963–1990 is 0.2 mg m−2 a−1, which is low compared to most Greenland ice-core sites over the same period. The Devon ice cap rBC record also differs from existing Greenland records in that it shows no evidence of a substantial increase in rBC deposition during the early-mid 20th century, which, for Greenland, has been attributed to mid-latitude coal burning emissions. The deposition of other contaminants such as sulfate and Pb increased on Devon ice cap in the 20th century but without a concomitant rise in rBC. Part of the difference with Greenland may be due to local factors such as wind scouring of winter snow at the coring site on Devon ice cap. Air back-trajectory analyses also suggest that Devon ice cap receives BC from more distant North American and Eurasian sources than Greenland, and aerosol mixing and removal during long-range transport over the Arctic Ocean likely masks some of the specific BC source-receptor relationships. Findings from this study underscore the large variability in BC aerosol deposition across the Arctic region that may arise from different transport patterns. This variability needs to be accounted for when estimating the large-scale albedo lowering effect of BC deposition on Arctic snow/ice.


2018 ◽  
Vol 18 (7) ◽  
pp. 5045-5058 ◽  
Author(s):  
Heidi M. Pickard ◽  
Alison S. Criscitiello ◽  
Christine Spencer ◽  
Martin J. Sharp ◽  
Derek C. G. Muir ◽  
...  

Abstract. Perfluoroalkyl acids (PFAAs) are persistent, in some cases, bioaccumulative compounds found ubiquitously within the environment. They can be formed from the atmospheric oxidation of volatile precursor compounds and undergo long-range transport (LRT) through the atmosphere and ocean to remote locations. Ice caps preserve a temporal record of PFAA deposition making them useful in studying the atmospheric trends in LRT of PFAAs in polar or mountainous regions, as well as in understanding major pollutant sources and production changes over time. A 15 m ice core representing 38 years of deposition (1977–2015) was collected from the Devon Ice Cap in Nunavut, providing us with the first multi-decadal temporal ice record in PFAA deposition to the Arctic. Ice core samples were concentrated using solid phase extraction and analyzed by liquid and ion chromatography methods. Both perfluoroalkyl carboxylic acids (PFCAs) and perfluoroalkyl sulfonic acids (PFSAs) were detected in the samples, with fluxes ranging from < LOD to 141 ng m−2 yr−1. Our results demonstrate that the PFCAs and perfluorooctane sulfonate (PFOS) have continuous and increasing deposition on the Devon Ice Cap, despite recent North American and international regulations and phase-outs. We propose that this is the result of on-going manufacture, use and emissions of these compounds, their precursors and other newly unidentified compounds in regions outside of North America. By modelling air mass transport densities, and comparing temporal trends in deposition with production changes of possible sources, we find that Eurasian sources, particularly from Continental Asia, are large contributors to the global pollutants impacting the Devon Ice Cap. Comparison of PFAAs to their precursors and correlations of PFCA pairs showed that deposition of PFAAs is dominated by atmospheric formation from volatile precursor sources. Major ion analysis confirmed that marine aerosol inputs are unimportant to the long-range transport mechanisms of these compounds. Assessments of deposition, homologue profiles, ion tracers, air mass transport models, and production and regulation trends allow us to characterize the PFAA depositional profile on the Devon Ice Cap and further understand the LRT mechanisms of these persistent pollutants.


2009 ◽  
Vol 50 (51) ◽  
pp. 85-92 ◽  
Author(s):  
Matthew J. Burke ◽  
John Woodward ◽  
Andrew J. Russell ◽  
P. Jay Fleisher

AbstractWe have used ground-penetrating radar (GPR) to observe englacial structural control upon the development of an esker formed during a high-magnitude outburst flood (jökulhlaup). The surge-type Skeiðarárjökull, an outlet glacier of the Vatnajökull ice cap, Iceland, is a frequent source of jökulhlaups. The rising-stage waters of the November 1996 jökulhlaup travelled through a dense network of interconnected fractures that perforated the margin of the glacier. Subsequent discharge focused upon a small number of conduit outlets. Recent ice-marginal retreat has exposed a large englacial esker associated with one of these outlets. We investigated structural controls on esker genesis in April 2006, by collecting >2.5km of GPR profiles on the glacier surface up-glacier of where the esker ridge has been exposed by meltout. In lines closest to the exposed esker ridge, we interpret areas of englacial horizons up to ~30m wide and ~10–15m high as an up-glacier continuation of the esker sediments. High-amplitude, dipping horizons define the base of esker materials across many lines. Similar dipping surfaces deeper in the profiles suggest that: (1) the dipping surfaces beneath the esker are englacial tephera bands; (2) floodwaters were initially discharged along structurally controlled englacial surfaces (tephra bands); (3) the rapid increase in discharge resulted in hydrofracturing; (4) establishment of preferential flow paths resulted in conduit development along the tephra bands due to localized excavation of surrounding glacier ice; and (5) sedimentation took place within the new accommodation space to form the englacial structure melting out to produce the esker.


Sign in / Sign up

Export Citation Format

Share Document