scholarly journals Glacier ice archives fifteen-thousand-year-old viruses

2020 ◽  
Author(s):  
Zhi-Ping Zhong ◽  
Natalie E. Solonenko ◽  
Yueh-Fen Li ◽  
Maria C. Gazitúa ◽  
Simon Roux ◽  
...  

AbstractWhile glacier ice cores provide climate information over tens to hundreds of thousands of years, study of microbes is challenged by ultra-low-biomass conditions, and virtually nothing is known about co-occurring viruses. Here we establish ultra-clean microbial and viral sampling procedures and apply them to two ice cores from the Guliya ice cap (northwestern Tibetan Plateau, China) to study these archived communities. This method reduced intentionally contaminating bacterial, viral, and free DNA to background levels in artificial-ice-core control experiments, and was then applied to two authentic ice cores to profile their microbes and viruses. The microbes differed significantly across the two ice cores, presumably representing the very different climate conditions at the time of deposition that is similar to findings in other cores. Separately, viral particle enrichment and ultra-low-input quantitative viral metagenomic sequencing from ∼520 and ∼15,000 years old ice revealed 33 viral populations (i.e., species-level designations) that represented four known genera and likely 28 novel viral genera (assessed by gene-sharing networks). In silico host predictions linked 18 of the 33 viral populations to co-occurring abundant bacteria, including Methylobacterium, Sphingomonas, and Janthinobacterium, indicating that viruses infected several abundant microbial groups. Depth-specific viral communities were observed, presumably reflecting differences in the environmental conditions among the ice samples at the time of deposition. Together, these experiments establish a clean procedure for studying microbial and viral communities in low-biomass glacier ice and provide baseline information for glacier viruses, some of which appear to be associated with the dominant microbes in these ecosystems.ImportanceThis study establishes ultra-clean microbial and viral sampling procedures for glacier ice, which complements prior in silico decontamination methods and expands, for the first time, the clean procedures to viruses. Application of these methods to glacier ice confirmed prior common microbiological findings for a new ice core climate record, and provides a first window into viral genomes and their ecology from glacier ice across two time horizons, and emphasizes their likely impact on abundant microbial groups. Together these efforts provide clean sampling approaches and foundational datasets that should enable simultaneous access to an archived virosphere in glacier ice.

Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhi-Ping Zhong ◽  
Funing Tian ◽  
Simon Roux ◽  
M. Consuelo Gazitúa ◽  
Natalie E. Solonenko ◽  
...  

Abstract Background Glacier ice archives information, including microbiology, that helps reveal paleoclimate histories and predict future climate change. Though glacier-ice microbes are studied using culture or amplicon approaches, more challenging metagenomic approaches, which provide access to functional, genome-resolved information and viruses, are under-utilized, partly due to low biomass and potential contamination. Results We expand existing clean sampling procedures using controlled artificial ice-core experiments and adapted previously established low-biomass metagenomic approaches to study glacier-ice viruses. Controlled sampling experiments drastically reduced mock contaminants including bacteria, viruses, and free DNA to background levels. Amplicon sequencing from eight depths of two Tibetan Plateau ice cores revealed common glacier-ice lineages including Janthinobacterium, Polaromonas, Herminiimonas, Flavobacterium, Sphingomonas, and Methylobacterium as the dominant genera, while microbial communities were significantly different between two ice cores, associating with different climate conditions during deposition. Separately, ~355- and ~14,400-year-old ice were subject to viral enrichment and low-input quantitative sequencing, yielding genomic sequences for 33 vOTUs. These were virtually all unique to this study, representing 28 novel genera and not a single species shared with 225 environmentally diverse viromes. Further, 42.4% of the vOTUs were identifiable temperate, which is significantly higher than that in gut, soil, and marine viromes, and indicates that temperate phages are possibly favored in glacier-ice environments before being frozen. In silico host predictions linked 18 vOTUs to co-occurring abundant bacteria (Methylobacterium, Sphingomonas, and Janthinobacterium), indicating that these phages infected ice-abundant bacterial groups before being archived. Functional genome annotation revealed four virus-encoded auxiliary metabolic genes, particularly two motility genes suggest viruses potentially facilitate nutrient acquisition for their hosts. Finally, given their possible importance to methane cycling in ice, we focused on Methylobacterium viruses by contextualizing our ice-observed viruses against 123 viromes and prophages extracted from 131 Methylobacterium genomes, revealing that the archived viruses might originate from soil or plants. Conclusions Together, these efforts further microbial and viral sampling procedures for glacier ice and provide a first window into viral communities and functions in ancient glacier environments. Such methods and datasets can potentially enable researchers to contextualize new discoveries and begin to incorporate glacier-ice microbes and their viruses relative to past and present climate change in geographically diverse regions globally.


2016 ◽  
Author(s):  
Yong Chen ◽  
Xiang-Kai Li ◽  
Jing Si ◽  
Guang-Jian WU ◽  
Li-De Tian ◽  
...  

Abstract. Microorganisms are continuously blown onto the glacier snow, and thus the glacial depth profiles provide excellent geographic archives of the microbial communities. However, it is uncertain about how the microbial communities respond to the climatic and environmental changes over the glacier ice. In the present study, the live microbial density, stable isotopic ratios, 18O/16O in the precipitation, and mineral particle concentrations along the glacial depth profiles were collected from ice cores from the Muztagata glacier and the Dunde ice cap. Six bacterial 16S rRNA gene clone libraries were established from the Dunde ice core. The Muztagata ice core presented seasonal response patterns for both live and total cell density with high cell density occurring in the warming spring and summer. Both ice core data showed a frequent association of dust and microorganisms in the ice. Genera Polaromas sp., Pedobacter sp, Flavobacterium sp., Cryobacteriium sp., and Propionibacterium/Blastococcus sp. frequently appeared at the six tested ice layers, and constituted the dominant species endemic to the Dunde ice cap, whereas some genera such as Rhodoferax sp., Variovorax sp., Sphingobacterium sp., Cyanobacterium sp., Knoellia sp., and Luteolibacter sp. rarely presented in the ice. In conclusion, data present a discrete increase of microbial cell density in the warming seasons and biogeography of the microbial communities associated with the predominance of a few endemic groups in the local glacial regions. This reinforces our hypothesis of dust-borne and post-deposition being the main agents interactively controlling microbial load in the glacier ice.


1980 ◽  
Vol 25 (91) ◽  
pp. 69-84 ◽  
Author(s):  
Lonnie G. Thompson

AbstractGlaciological results of the continuing investigations of the Quelccaya ice cap located at lat. 13° 56’ S., long. 70° 50’ W., in the Cordillera Oriental of southern Peru are presented. Ice cores to a depth of 15 m have been retrieved from the summit dome (5650 m), middle dome (5543 m), and south dome (5480 m) and sampled in detail for microparticle, oxygen-isotope, and total-β-activity measurements. Results of these core analyses indicate that although the summit of this ice cap is only 300 m above the annual snow line and the firn is temperate, an interpretable stratigraphic record is preserved. The marked seasonal ice stratigraphy is produced by the marked seasonal variation in regional precipitation. High concentrations of microparticles and β- radioactive material occur during the dry season (May-August). Microparticles deposited during the rainy season are larger than those deposited during the dry season. On the Quelccaya ice cap the most negative δ18O values occur during the warmer rainy season (the opposite occurs in polar regions). The near-surface mean δ value of – 21‰ is remarkably low for this tropical site where the measured mean annual air temperature is – 3°C The seasonality of the microparticles, total β activity, and isotope ratios offers the prospect of a climatic ice-core record from this tropical ice cap.


2019 ◽  
Vol 13 (6) ◽  
pp. 1743-1752 ◽  
Author(s):  
Shugui Hou ◽  
Wangbin Zhang ◽  
Hongxi Pang ◽  
Shuang-Ye Wu ◽  
Theo M. Jenk ◽  
...  

Abstract. Ice cores from the Tibetan Plateau (TP) are widely used for reconstructing past climatic and environmental conditions that extend beyond the instrumental period. However, challenges in dating and interpreting ice core records often lead to inconsistent results. The Guliya ice core drilled from the northwestern TP suggested a cooling trend during the mid-Holocene based on its decreasing δ18O values, which is not observed in other Tibetan ice cores. Here we present a new high-resolution δ18O record of the Chongce ice cores drilled to bedrock ∼30 km away from the Guliya ice cap. Our record shows a warming trend during the mid-Holocene. Based on our results as well as previously published ice core data, we suggest that the apparent discrepancy between the Holocene δ18O records of the Guliya and the Chongce ice cores may be attributed to a possible misinterpretation of the Guliya ice core chronology.


2009 ◽  
Vol 55 (194) ◽  
pp. 985-996 ◽  
Author(s):  
M. Sigl ◽  
T.M. Jenk ◽  
T. Kellerhals ◽  
S. Szidat ◽  
H.W. Gäggeler ◽  
...  

AbstractA recently developed dating method for glacier ice, based on the analysis of radiocarbon in carbonaceous aerosol particles, is thoroughly investigated. We discuss the potential of this method to achieve a reliable dating using examples from a mid- and a low-latitude ice core. Two series of samples from Colle Gnifetti (4450 m a.s.l., Swiss Alps) and Nevado Illimani (6300 m a.s.l., Bolivian Andes) demonstrate that the 14C ages deduced from the water-insoluble organic carbon fraction represent the age of the ice. Sample sizes ranged between 7 and 100 μg carbon. For validation we compare our results with those from independent dating. This new method is thought to have major implications for dating non-polar ice cores in the future, as it provides complementary age information for time periods not accessible with common dating techniques.


2020 ◽  
Vol 35 (10) ◽  
pp. 2204-2212
Author(s):  
Pascal Bohleber ◽  
Marco Roman ◽  
Martin Šala ◽  
Carlo Barbante

The novel combination of ice core LA-ICP-MS with improved imaging techniques reveals impurity localization without artifacts.


1997 ◽  
Vol 43 (143) ◽  
pp. 90-97 ◽  
Author(s):  
Roy M. Koerner

AbstractPoor consideration has been given in many Arctic circum-polar ice-core studies to the effect of summer snow melt on chemistry, stable-isotope concentrations and time-scales. Many of these corps are drilled close to the firn line where melt is intense. Some come from below the firn line where accumulation is solely in the form of super-imposed ice. In all cases, seasonal signals are reduced or removed and, in some, time gaps develop during periods of excessive melting which situate the drill site in the ablation zone. Consequently, cross correlations of assumed synchronous events among the cores are invalid, so that time-scales along the same cores differ between authors by factors of over 2. Many so-called climatic signals are imaginary rather than real. By reference to published analyses of cores from the superimposed ice zone on Devon Ice Cap (Koerner, 1970) and Meighen Ice Cap (Koerner and Paterson, 1974), it is shown how melt affects all the normally well-established ice-core proxies and leads to their misinterpretation. Despite these limitations, the cores can give valuable low-resolution records for all or part of the Holocene. They show that the thermal maximum in the circum-polar Arctic occurred in the early Holocene. This maximum, effected negative balances on all the ice caps and removed the smaller ones. Cooler conditions in the second half of the Holocene have caused the regrowth of these same ice caps.


1964 ◽  
Vol 5 (37) ◽  
pp. 39-59 ◽  
Author(s):  
R. H. Ragle ◽  
R. G. Blair ◽  
L. E. Persson

AbstractA four-man party representing the Arctic Institute of North America and the Department of Geology, Dartmouth College, went to the Ward Hunt Ice Shelf in 1960 to obtain ice cores for subsequent laboratory analysis. The overall objective of the project was to study the structural and stratigraphic history of the shelf and its relationship to the environment through laboratory analysis of the cores, using stratigraphic. petrologic, chemical, and physical methods.The four cores obtained were logged, packed, and shipped to Dartmouth College for detailed study. The stratigraphy and structure of the ice were studied under natural and plane polarized light conditions. The results of this initial work showed that the cores were composed of four ice types: glacier ice, lake ice, sea ice, and transition ice. Chlorinity, sulfate, and density profiles complemented megascopic studies and were most useful criteria for plotting stratigraphie changes in ice type.Results of the investigations thus far have yielded new information about the gross structure and stratigraphy of the ice shelf and re-entrant. They have also shown that the physical and chemical techniques employed will be useful in future ice-core analysis.


1964 ◽  
Vol 5 (37) ◽  
pp. 39-59 ◽  
Author(s):  
R. H. Ragle ◽  
R. G. Blair ◽  
L. E. Persson

Abstract A four-man party representing the Arctic Institute of North America and the Department of Geology, Dartmouth College, went to the Ward Hunt Ice Shelf in 1960 to obtain ice cores for subsequent laboratory analysis. The overall objective of the project was to study the structural and stratigraphic history of the shelf and its relationship to the environment through laboratory analysis of the cores, using stratigraphic. petrologic, chemical, and physical methods. The four cores obtained were logged, packed, and shipped to Dartmouth College for detailed study. The stratigraphy and structure of the ice were studied under natural and plane polarized light conditions. The results of this initial work showed that the cores were composed of four ice types: glacier ice, lake ice, sea ice, and transition ice. Chlorinity, sulfate, and density profiles complemented megascopic studies and were most useful criteria for plotting stratigraphie changes in ice type. Results of the investigations thus far have yielded new information about the gross structure and stratigraphy of the ice shelf and re-entrant. They have also shown that the physical and chemical techniques employed will be useful in future ice-core analysis.


1997 ◽  
Vol 24 ◽  
pp. 283-287 ◽  
Author(s):  
Vladimir N. Mikhalenko

Glaciers of both the Arctic and mid-latitude mountain systems within Eurasia have retreated intensively during the past century. Measured and reconstructed glacier mass balances show that glacier retreat began around the 1880s. The mean annual mass-balance value for 1880–1990 was −480 mm a−1 for glaciers with maritime climatic conditions, and −140 mm a−1 for continental glaciers. It can be concluded that warming in the Caucasus occurred during at least the last 60 years, according to the distribution of crystal sizes in an ice core from the Dzhantugan firn plateau. Temperatures measured in 1962 at 20 m on the Gregoriev ice cap, Tien Shan, were −4.2°C while in 1990 they were −2°C, a warming of 2.2°C over 28 years. Changes in the isotopic composition of glacier ice during the 20th century indicate recent and continuing warming in different regions of Eurasia. The δ18O records reveal an enrichment at the Gregoriev ice cap during the last 50 years, while surface temperatures at the Tien Shan meteorological station have increased 0.5°C since 1930.


Sign in / Sign up

Export Citation Format

Share Document