scholarly journals Quantification of the radiative impact of light-absorbing particles during two contrasted snow seasons at Col du Lautaret (2058 m a.s.l., French Alps)

Author(s):  
François Tuzet ◽  
Marie Dumont ◽  
Ghislain Picard ◽  
Maxim Lamare ◽  
Didier Voisin ◽  
...  

Abstract. The presence of light-absorbing particles (LAPs) in snow leads to a decrease in shortwave albedo, affecting the surface energy budget. Precisely quantifying the impacts of LAPs on snowpack evolution is crucial to characterise the spatio-temporal variability of snowmelt and assess snow albedo feedbacks in detail. However, the understanding of the impacts of LAPs is hampered by the lack of dedicated datasets, as well as the scarcity of models able to represent the interactions between LAPs and snow metamorphism. The present study aims to address both these limitations by introducing a survey of LAP concentrations over two snow seasons in the French Alps, as well as an estimation of their impacts based on the Crocus snowpack model that represents the complex interplays between LAP dynamics and snow metamorphism. First, we present a unique dataset collected at the Col du Lautaret (2058 m a.s.l; French Alps) for the two snow seasons 2016–2017 and 2017–2018. This dataset consists of spectral albedo measurements (manual and automated), vertical profiles of snow specific surface area (SSA), density, and concentrations of refractive Black Carbon (rBC), Elemental Carbon (EC) and mineral dust. Spectral albedo data are processed to estimate near-surface SSA and LAP absorption-equivalent concentrations near the surface of the snowpack. These estimates are then compared to chemical measurements of dust and BC concentrations, as well as to SSA measurements acquired by near-infrared reflectometry. Our dataset highlights large discrepancies between the two measurement techniques of BC concentrations, with EC concentrations being one order of magnitude higher than rBC measurements. In view of LAP absorption inferred from albedo measurements, the mass absorption efficiency (MAE) of BC used in our study (11.25 g m−2 at 550 nm) is more appropriate for EC measurements than for rBC ones. Second, we present ensemble snowpack simulations of ESCROC – the multi-physics version of the detailed snowpack model Crocus – forced with in-situ meteorological data as well as dust and BC deposition fluxes from the ALADIN-Climate atmospheric model. The results of these simulations are compared to the near-surface properties estimated from automatic albedo measurements, showing that the temporal variations of near-surface LAP concentration and SSA are correctly reproduced. The impact of dust and BC on our simulations is estimated by comparing this ensemble to a similar ensemble that does not account for LAPs. The seasonal radiative forcing of LAPs is 1.33 times higher for the 2017–2018 snow season than for the 2016–2017 one, highlighting a strong variability between these two seasons. However, the shortening of the snow season caused by LAPs are similar with 10 ± 5 and 11 ± 1 days for the first and the second snow seasons respectively. This counter-intuitive result is attributed to two small snowfalls at the end of the first season and highlights the importance to account for meteorological conditions to correctly predict the impact of LAPs. The strong variability of season shortening caused by LAPs in the multi-physics ensemble for the first season also points out the sensitivity of model-based estimations of LAP impact to modelling uncertainties of other processes. Finally, the indirect impact of LAPs (i.e. the enhancement of energy absorption due to acceleration of the metamorphism by LAPs) is negligible for the two years considered here, contrary to what was found in previous studies for other sites. This finding is mainly attributed to the meteorological conditions of the two studied snow seasons.

2020 ◽  
Vol 14 (12) ◽  
pp. 4553-4579
Author(s):  
François Tuzet ◽  
Marie Dumont ◽  
Ghislain Picard ◽  
Maxim Lamare ◽  
Didier Voisin ◽  
...  

Abstract. The presence of light-absorbing particles (LAPs) in snow leads to a decrease in short-wave albedo affecting the surface energy budget. However, the understanding of the impacts of LAPs is hampered by the lack of dedicated datasets, as well as the scarcity of models able to represent the interactions between LAPs and snow metamorphism. The present study aims to address both these limitations by introducing a survey of LAP concentrations over two snow seasons in the French Alps and an estimation of their impacts based on the Crocus snowpack model that represents the complex interplays between LAP dynamics and snow metamorphism. First, a unique dataset collected at Col du Lautaret (2058 m a.s.l., above sea level, French Alps) for the two snow seasons 2016–2017 and 2017–2018 is presented. This dataset consists of spectral albedo measurements, vertical profiles of snow specific surface area (SSA), density and concentrations of different LAP species. Spectral albedos are processed to estimate SSA and LAP absorption-equivalent concentrations near the surface of the snowpack. These estimates are then compared to chemical measurements of LAP concentrations and SSA measurements. Our dataset highlights, among others, large discrepancies between two measurement techniques of black carbon (BC) concentrations in snow (namely thermal-optical and laser-induced incandescence). Second, we present ensemble snowpack simulations of the multi-physics version of the detailed snowpack model Crocus, forced with in situ meteorological data, as well as dust and BC deposition fluxes from an atmospheric model. The temporal variations of near-surface LAP concentrations and SSA are most of the time correctly simulated. The simulated seasonal radiative forcing of LAPs is 33 % higher for the 2017–2018 snow season than for the 2016–2017 one, highlighting a strong variability between these two seasons. However, the shortening of the snow season caused by LAPs is similar with 10 ± 5 and 11 ± 1 d for the first and the second snow seasons, respectively. This counter-intuitive result is attributed to two small snowfalls at the end of the first season and highlights the importance in accounting for meteorological conditions to correctly predict the impact of LAPs. The strong variability of season shortening caused by LAPs in the multi-physics ensemble for the first season (10 ± 5 d) also points out the sensitivity of model-based estimations of LAP impact on modelling uncertainties of other processes. Finally, the indirect impact of LAPs (i.e. the enhancement of energy absorption due to the acceleration of the metamorphism by LAPs) is negligible for the 2 years considered here, which is contrary to what was found in previous studies for other sites.


2020 ◽  
Author(s):  
Louis Le Toumelin ◽  
Charles Amory ◽  
Vincent Favier ◽  
Christoph Kittel ◽  
Stefan Hofer ◽  
...  

Abstract. In order to understand the evolution of the climate of Antarctica, dominant processes that control surface and low-atmosphere meteorology need to be accurately captured in climate models. We used the regional climate model MAR (v3.11) at 10 km horizontal resolution, forced by ERA5 reanalysis over a 9-year period (2010–2018), to study the impact of drifting snow (designing here the wind-driven transport of snow particles below and above 2 m) on the near-surface atmosphere and surface in Adelie Land, East Antarctica. Two model runs were performed, respectively with and without drifting snow, and compared to half-hourly in situ observations at D17, a coastal and windy location of Adelie Land. We show that sublimation of drifting-snow particles in the atmosphere drives the difference between model runs and is responsible for significant impacts on the near-surface atmosphere. By cooling the low atmosphere and increasing its relative humidity, drifting snow also reduces sensible and latent heat exchanges at the surface (−5.9 W m−2 on average). Moreover, large and dense drifting-snow layers act as near-surface cloud by interacting with incoming radiative fluxes, enhancing incoming longwave radiations and reducing incoming shortwave radiations in summer (net radiative forcing: 5.9 W m−2). Even if drifting snow modifies these processes involved in surface-atmosphere interactions, the total surface energy budget is only slightly modified by introducing drifting snow, because of compensating effects in surface energy fluxes. The drifting-snow driven effects are not prominent near the surface but peak higher in the boundary layer (fifth vertical level, 38 m) where drifting snow sublimation is the most pronounced. Accounting for drifting snow in MAR generally improves the comparison at D17, more especially for the representation of relative humidity (mean bias reduced from −11.1 % to 2.9 %) and incoming longwave radiation (mean bias reduced from −7.6 W m−2 to −1.5 W m−2). Consequently, our results suggest that a detailed representation of drifting-snow processes is required in climate models to better capture the near–surface meteorology and surface–atmosphere interactions in coastal Adelie Land.


Atmosphere ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 759
Author(s):  
Haochen Tan ◽  
Pallav Ray ◽  
Mukul Tewari ◽  
James Brownlee ◽  
Ajaya Ravindran

Due to rapid urbanization, the near-surface meteorological conditions over urban areas are greatly modulated. To capture such modulations, sophisticated urban parameterizations with enhanced hydrological processes have been developed. In this study, we use the single-layer urban canopy model (SLUCM) available within the Weather Research and Forecasting (WRF) model to assess the response of near-surface temperature, wind, and moisture to advection under the impact of the green roof. An ensemble of simulations with different planetary boundary layer (PBL) schemes is conducted in the presence (green roof (GR)) and absence (control (CTL)) of green roof systems. Our results indicate that the near-surface temperature is found to be driven primarily by the surface heat flux with a minor influence from the zonal advection of temperature. The momentum budget analysis shows that both zonal and meridional momentum advection during the evening and early nighttime plays an important role in modulating winds over urban areas. The near-surface humidity remains nearly unchanged in GR compared to CTL, although the physical processes that determine the changes in humidity were different, in particular during the evening when the GR tends to have less moisture advection due to the reduced temperature gradient between the urban areas and the surroundings. Implications of our results are discussed.


2015 ◽  
Vol 15 (13) ◽  
pp. 7173-7193 ◽  
Author(s):  
A. Veira ◽  
S. Kloster ◽  
N. A. J. Schutgens ◽  
J. W. Kaiser

Abstract. Wildfires represent a major source for aerosols impacting atmospheric radiation, atmospheric chemistry and cloud micro-physical properties. Previous case studies indicated that the height of the aerosol–radiation interaction may crucially affect atmospheric radiation, but the sensitivity to emission heights has been examined with only a few models and is still uncertain. In this study we use the general circulation model ECHAM6 extended by the aerosol module HAM2 to investigate the impact of wildfire emission heights on atmospheric long-range transport, black carbon (BC) concentrations and atmospheric radiation. We simulate the wildfire aerosol release using either various versions of a semi-empirical plume height parametrization or prescribed standard emission heights in ECHAM6-HAM2. Extreme scenarios of near-surface or free-tropospheric-only injections provide lower and upper constraints on the emission height climate impact. We find relative changes in mean global atmospheric BC burden of up to 7.9±4.4 % caused by average changes in emission heights of 1.5–3.5 km. Regionally, changes in BC burden exceed 30–40 % in the major biomass burning regions. The model evaluation of aerosol optical thickness (AOT) against Moderate Resolution Imaging Spectroradiometer (MODIS), AErosol RObotic NETwork (AERONET) and Cloud–Aerosol Lidar with Orthogonal Polarization (CALIOP) observations indicates that the implementation of a plume height parametrization slightly reduces the ECHAM6-HAM2 biases regionally, but on the global scale these improvements in model performance are small. For prescribed emission release at the surface, wildfire emissions entail a total sky top-of-atmosphere (TOA) radiative forcing (RF) of −0.16±0.06 W m−2. The application of a plume height parametrization which agrees reasonably well with observations introduces a slightly stronger negative TOA RF of −0.20±0.07 W m−2. The standard ECHAM6-HAM2 model in which 25 % of the wildfire emissions are injected into the free troposphere (FT) and 75 % into the planetary boundary layer (PBL), leads to a TOA RF of −0.24±0.06 W m−2. Overall, we conclude that simple plume height parametrizations provide sufficient representations of emission heights for global climate modeling. Significant improvements in aerosol wildfire modeling likely depend on better emission inventories and aerosol process modeling rather than on improved emission height parametrizations.


2012 ◽  
Vol 6 (2) ◽  
pp. 353-363 ◽  
Author(s):  
P. Kuipers Munneke ◽  
M. R. van den Broeke ◽  
J. C. King ◽  
T. Gray ◽  
C. H. Reijmer

Abstract. Data collected by two automatic weather stations (AWS) on the Larsen C ice shelf, Antarctica, between 22 January 2009 and 1 February 2011 are analyzed and used as input for a model that computes the surface energy budget (SEB), which includes melt energy. The two AWSs are separated by about 70 km in the north–south direction, and both the near-surface meteorology and the SEB show similarities, although small differences in all components (most notably the melt flux) can be seen. The impact of subsurface absorption of shortwave radiation on melt and snow temperature is significant, and discussed. In winter, longwave cooling of the surface is entirely compensated by a downward turbulent transport of sensible heat. In summer, the positive net radiative flux is compensated by melt, and quite frequently by upward turbulent diffusion of heat and moisture, leading to sublimation and weak convection over the ice shelf. The month of November 2010 is highlighted, when strong westerly flow over the Antarctic Peninsula led to a dry and warm föhn wind over the ice shelf, resulting in warm and sunny conditions. Under these conditions the increase in shortwave and sensible heat fluxes is larger than the decrease of net longwave and latent heat fluxes, providing energy for significant melt.


1994 ◽  
Vol 12 (5) ◽  
pp. 469-477 ◽  
Author(s):  
E. Martin ◽  
E. Brun ◽  
Y. Durand

Abstract. In order to study the sensitivity of snow cover to changes in meteorological variables at a regional scale, a numerical snow model and an analysis system of the meteorological conditions adapted to relief were used. This approach has been successfully tested by comparing simulated and measured snow depth at 37 sites in the French Alps during a ten year data period. Then, the sensitivity of the snow cover to a variation in climatic conditions was tested by two different methods, which led to very similar results. To assess the impact of a particular "doubled CO2" scenario, coherent perturbations were introduced in the input data of the snow model. It was found that although the impact would be very pronounced, it would also be extremely differentiated, dependent on the internal state of the snow cover. The most sensitive areas are the elevations below 2400 m, especially in the southern part of the French Alps.


2015 ◽  
Vol 15 (5) ◽  
pp. 6695-6744 ◽  
Author(s):  
A. Veira ◽  
S. Kloster ◽  
N. A. J. Schutgens ◽  
J. W. Kaiser

Abstract. Wildfires represent a major source for aerosols impacting atmospheric radiation, atmospheric chemistry and cloud micro-physical properties. Although former studies indicated that the height of the aerosol–radiation interaction crucially affects the overall climate impact, the importance of fire emission heights in particular remains to be quantified. In this study we use the general circulation model ECHAM6 extended by the aerosol module HAM2 to investigate the impact of wildfire emission heights on atmospheric long-range transport, Black Carbon (BC) concentrations and atmospheric radiation. We simulate the wildfire aerosol release using either various versions of a semi-empirical plume height parametrization or prescribed standard emission heights in ECHAM6-HAM2. Extreme scenarios of near-surface or free-tropospheric only injections provide lower and upper constraints on the emission height climate impact. We find relative changes in mean global atmospheric BC burden of up to 7.9±4.4% caused by average changes in emission heights of 1.5–3.5 km. Regionally, changes in BC burden exceed 30–40% in the major biomass burning regions. The model evaluation of Aerosol Optical Thickness (AOT) against MODIS, AERONET and CALIOP observations indicates that the implementation of a plume height parametrization slightly reduces the ECHAM6-HAM2 biases regionally, but on the global scale these improvements in model performance are small. For prescribed emission release at the surface, wildfire emissions entail a total sky Top Of Atmosphere (TOA) Radiative Forcing (RF) of −0.16±0.06 W m−2. The application of a plume height parametrization which agrees reasonably well with observations introduces a slightly stronger negative TOA RF of −0.20±0.07 W m−2. The standard ECHAM6-HAM2 model in which 25% of the wildfire emissions are injected into the free troposphere and 75% into the planetary boundary layer, leads to a TOA RF of −0.24±0.06 W m−2. Overall, we conclude that simple plume height parametrizations provide sufficient representations of emission heights for global climate modeling. Significant improvements in aerosol wildfire modeling likely depend on better emission inventories and aerosol process modeling rather than on improved emission height parametrizations.


2021 ◽  
Vol 118 (42) ◽  
pp. e2110472118
Author(s):  
Gordon A. Novak ◽  
Charles H. Fite ◽  
Christopher D. Holmes ◽  
Patrick R. Veres ◽  
J. Andrew Neuman ◽  
...  

Oceans emit large quantities of dimethyl sulfide (DMS) to the marine atmosphere. The oxidation of DMS leads to the formation and growth of cloud condensation nuclei (CCN) with consequent effects on Earth’s radiation balance and climate. The quantitative assessment of the impact of DMS emissions on CCN concentrations necessitates a detailed description of the oxidation of DMS in the presence of existing aerosol particles and clouds. In the unpolluted marine atmosphere, DMS is efficiently oxidized to hydroperoxymethyl thioformate (HPMTF), a stable intermediate in the chemical trajectory toward sulfur dioxide (SO2) and ultimately sulfate aerosol. Using direct airborne flux measurements, we demonstrate that the irreversible loss of HPMTF to clouds in the marine boundary layer determines the HPMTF lifetime (τHPMTF < 2 h) and terminates DMS oxidation to SO2. When accounting for HPMTF cloud loss in a global chemical transport model, we show that SO2 production from DMS is reduced by 35% globally and near-surface (0 to 3 km) SO2 concentrations over the ocean are lowered by 24%. This large, previously unconsidered loss process for volatile sulfur accelerates the timescale for the conversion of DMS to sulfate while limiting new particle formation in the marine atmosphere and changing the dynamics of aerosol growth. This loss process potentially reduces the spatial scale over which DMS emissions contribute to aerosol production and growth and weakens the link between DMS emission and marine CCN production with subsequent implications for cloud formation, radiative forcing, and climate.


2021 ◽  
Author(s):  
Tiago Silva ◽  
Jakob Abermann ◽  
Sonika Shahi ◽  
Wolfgang Schöner ◽  
Brice Nöel

&lt;p&gt;Greenland Block Index (GBI) and North Atlantic Oscillation (NAO) are climate indices widely used for climatological studies especially over the Greenland Ice Sheet (GrIS). Particularly in summer, they are highly and negatively correlated; both have a strong relationship to near surface processes around the GrIS; their magnitude creates non-linear feedbacks and influences the low troposphere, shaping spatial accumulation and ablation patterns.&lt;/p&gt;&lt;p&gt;NAO is a measure of the surface pressure difference over the North Atlantic, providing insight of intensity and location of the jet stream. GBI denotes the general circulation over Greenland at the 500-hPa level and depending on its signal promotes heat and moist advection towards inland.&lt;/p&gt;&lt;p&gt;Based on the 1959-2019 period, the extreme summer melt of 2019 recorded the highest mean summer GBI while the extreme summer melt of 2012 recorded the lowest mean summer NAO. Their impact, however, goes beyond the melting season since the inter-seasonal phase change of these two indices may enhance/ postpone early melt/late refreezing and vice-versa.&lt;/p&gt;&lt;p&gt;Supported by 62 years of high-resolution regional climate model output (RACMO2.3p2), this work uses a statistical approach to analyze inter-seasonal variability of climate oscillations and their impact on the surface energy budget components over the GrIS. Also, teleconnection changes in a changing climate are hypothesized.&lt;/p&gt;


Author(s):  
C. Huntingford ◽  
P. M. Cox ◽  
L. M. Mercado ◽  
S. Sitch ◽  
N. Bellouin ◽  
...  

Many atmospheric constituents besides carbon dioxide (CO 2 ) contribute to global warming, and it is common to compare their influence on climate in terms of radiative forcing, which measures their impact on the planetary energy budget. A number of recent studies have shown that many radiatively active constituents also have important impacts on the physiological functioning of ecosystems, and thus the ‘ecosystem services’ that humankind relies upon. CO 2 increases have most probably increased river runoff and had generally positive impacts on plant growth where nutrients are non-limiting, whereas increases in near-surface ozone (O 3 ) are very detrimental to plant productivity. Atmospheric aerosols increase the fraction of surface diffuse light, which is beneficial for plant growth. To illustrate these differences, we present the impact on net primary productivity and runoff of higher CO 2 , higher near-surface O 3 , and lower sulphate aerosols, and for equivalent changes in radiative forcing. We compare this with the impact of climate change alone, arising, for example, from a physiologically inactive gas such as methane (CH 4 ). For equivalent levels of change in radiative forcing, we show that the combined climate and physiological impacts of these individual agents vary markedly and in some cases actually differ in sign. This study highlights the need to develop more informative metrics of the impact of changing atmospheric constituents that go beyond simple radiative forcing.


Sign in / Sign up

Export Citation Format

Share Document