scholarly journals Variability of sea ice deformation rates in the Arctic and their relationship with basin-scale wind forcing

2012 ◽  
Vol 6 (6) ◽  
pp. 1553-1559 ◽  
Author(s):  
A. Herman ◽  
O. Glowacki

Abstract. The temporal variability of the moments of probability distribution functions (pdfs) of total sea ice deformation rates in the Arctic is analyzed in the context of the basin-scale wind forcing acting on the ice. The pdfs are estimated for 594 satellite-derived sea ice deformation maps from 11 winter seasons between 1996/1997 and 2007/2008, provided by the RADARSAT Geophysical Processor System. The temporal scale analyzed equals 3 days. The moments of the pdfs, calculated for a range of spatial scales (12.5–900 km), have two dominating components of variability: a seasonal cycle, with deformation rates decreasing throughout winter towards a minimum in March; and a short-term, synoptic variability, strongly correlated with the area-averaged magnitude of the wind stress over the Arctic, estimated based on the NCEP-DOE Reanalysis-2 data (correlation coefficient of 0.71 for the mean deformation rate). Due to scaling properties of the moments, logarithms of higher moments are strongly correlated with the wind stress as well. Exceptions are observed only at small spatial scales, as a result of extreme deformation events, not directly associated with large-scale wind forcing. By repeating the analysis within regions of different sizes and locations, we show that the wind–ice deformation correlation is largest at the basin scale and decreases with decreasing size of the area of study. Finally, we suggest that a positive trend in seasonally averaged correlation between sea ice deformation rates and the wind forcing, present in the analyzed data, may be related to an observed decrease in the multi-year ice area in the Arctic, indicating possibly even stronger correlations in the future.

2012 ◽  
Vol 6 (4) ◽  
pp. 3349-3367
Author(s):  
A. Herman ◽  
O. Glowacki

Abstract. In this paper, temporal variability of the moments of probability distribution functions (pdfs) of total sea ice deformation rates in the Arctic is analyzed in the context of the basin-scale wind forcing acting on the ice. The pdfs are estimated for 594 satellite-derived sea ice deformation maps from 11 winter seasons between 1996/1997 and 2007/2008, provided by the RADARSAT Geophysical Processor System. The moments of the pdfs, calculated for a range of spatial scales, have two dominating components of variability: a seasonal cycle, with deformation rates decreasing throughout winter towards a minimum in March; and a short-term, synoptic variability, strongly correlated with the area-averaged magnitude of the wind stress over the Arctic, estimated based on the NCEP-DOE Reanalysis-2 data (correlation coefficient of 0.71 for the mean deformation rate). Due to scaling properties of the moments, logarithms of higher moments are strongly correlated with the wind stress as well. By demonstrating that a very simple model can provide an explanation for the observed relationships, we show that they reflect the dominating balance of forces in the compact, quasi-stationary ice pack. Finally, we suggest that a positive trend in seasonally-averaged correlation between sea ice deformation rates and the wind forcing, present in the analyzed data, may be related to an observed decrease in the multi-year ice area in the Arctic, indicating possibly even stronger correlations in the future.


2015 ◽  
Vol 9 (1) ◽  
pp. 269-283 ◽  
Author(s):  
R. Lindsay ◽  
A. Schweiger

Abstract. Sea ice thickness is a fundamental climate state variable that provides an integrated measure of changes in the high-latitude energy balance. However, observations of mean ice thickness have been sparse in time and space, making the construction of observation-based time series difficult. Moreover, different groups use a variety of methods and processing procedures to measure ice thickness, and each observational source likely has different and poorly characterized measurement and sampling errors. Observational sources used in this study include upward-looking sonars mounted on submarines or moorings, electromagnetic sensors on helicopters or aircraft, and lidar or radar altimeters on airplanes or satellites. Here we use a curve-fitting approach to determine the large-scale spatial and temporal variability of the ice thickness as well as the mean differences between the observation systems, using over 3000 estimates of the ice thickness. The thickness estimates are measured over spatial scales of approximately 50 km or time scales of 1 month, and the primary time period analyzed is 2000–2012 when the modern mix of observations is available. Good agreement is found between five of the systems, within 0.15 m, while systematic differences of up to 0.5 m are found for three others compared to the five. The trend in annual mean ice thickness over the Arctic Basin is −0.58 ± 0.07 m decade−1 over the period 2000–2012. Applying our method to the period 1975–2012 for the central Arctic Basin where we have sufficient data (the SCICEX box), we find that the annual mean ice thickness has decreased from 3.59 m in 1975 to 1.25 m in 2012, a 65% reduction. This is nearly double the 36% decline reported by an earlier study. These results provide additional direct observational evidence of substantial sea ice losses found in model analyses.


2005 ◽  
Vol 133 (12) ◽  
pp. 3481-3497 ◽  
Author(s):  
Jennifer K. Hutchings ◽  
Petra Heil ◽  
William D. Hibler

Abstract Sea ice deformation is localized in narrow zones of high strain rate that extend hundreds of kilometers, for example, across the Arctic Basin. This paper demonstrates that these failure zones may be modeled with a viscous–plastic sea ice model, using an isotropic rheology. If the ice is assumed to be heterogeneous at the grid scale, and allowed to weaken in time, intersecting failure zones propagate across the region. The direction of failure propagation depends upon the stress applied to the ice (wind stress and boundary conditions) and the rheological model describing plastic failure of the ice. The spacing between failure zones is controlled by the magnitude of the wind stress and the distribution describing spatial variability of ice strength. Sea ice motion and deformation oscillate at close to a 12-h period throughout the Arctic and Antarctic pack ice. This oscillation is found at all spatial scales from hundreds of kilometers to the lead scale. It is shown that with an inertial embedded model, sea ice deformation rotates between pairs of fault patterns with a semidiurnal period. It is well known that linear zones of deformation exist at many spatial scales throughout the Arctic Basin. The model presented in this paper may be scaled to simulate these features.


2014 ◽  
Vol 8 (4) ◽  
pp. 4545-4580 ◽  
Author(s):  
R. Lindsay ◽  
A. Schweiger

Abstract. Sea ice thickness is a fundamental climate state variable that provides an integrated measure of changes in the high-latitude energy balance. However, observations of ice thickness have been sparse in time and space making the construction of observation-based time series difficult. Moreover, different groups use a variety of methods and processing procedures to measure ice thickness and each observational source likely has different and poorly characterized measurement and sampling biases. Observational sources include upward looking sonars mounted on submarines or moorings, electromagnetic sensors on helicopters or aircraft, and lidar or radar altimeters on airplanes or satellites. Here we use a curve-fitting approach to evaluate the systematic differences between eight different observation systems in the Arctic Basin. The approach determines the large-scale spatial and temporal variability of the ice thickness as well as the mean differences between the observation systems using over 3000 estimates of the ice thickness. The thickness estimates are measured over spatial scales of approximately 50 km or time scales of 1 month and the primary time period analyzed is 2000–2013 when the modern mix of observations is available. Good agreement is found between five of the systems, within 0.15 m, while systematic differences of up to 0.5 m are found for three others compared to the five. The trend in annual mean ice thickness over the Arctic Basin is −0.58 ± 0.07 m decade−1 over the period 2000–2013, while the annual mean ice thickness for the central Arctic Basin alone (the SCICEX Box) has decreased from 3.45 m in 1975 to 1.11 m in 2013, a 68% reduction. This is nearly double the 36% decline reported by an earlier study. These results provide additional direct observational confirmation of substantial sea ice losses found in model analyses.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 179
Author(s):  
Roxanne Ahmed ◽  
Terry Prowse ◽  
Yonas Dibike ◽  
Barrie Bonsal

Spring freshet is the dominant annual discharge event in all major Arctic draining rivers with large contributions to freshwater inflow to the Arctic Ocean. Research has shown that the total freshwater influx to the Arctic Ocean has been increasing, while at the same time, the rate of change in the Arctic climate is significantly higher than in other parts of the globe. This study assesses the large-scale atmospheric and surface climatic conditions affecting the magnitude, timing and regional variability of the spring freshets by analyzing historic daily discharges from sub-basins within the four largest Arctic-draining watersheds (Mackenzie, Ob, Lena and Yenisei). Results reveal that climatic variations closely match the observed regional trends of increasing cold-season flows and earlier freshets. Flow regulation appears to suppress the effects of climatic drivers on freshet volume but does not have a significant impact on peak freshet magnitude or timing measures. Spring freshet characteristics are also influenced by El Niño-Southern Oscillation, the Pacific Decadal Oscillation, the Arctic Oscillation and the North Atlantic Oscillation, particularly in their positive phases. The majority of significant relationships are found in unregulated stations. This study provides a key insight into the climatic drivers of observed trends in freshet characteristics, whilst clarifying the effects of regulation versus climate at the sub-basin scale.


2015 ◽  
Vol 28 (10) ◽  
pp. 4027-4033 ◽  
Author(s):  
Doo-Sun R. Park ◽  
Sukyoung Lee ◽  
Steven B. Feldstein

Abstract Wintertime Arctic sea ice extent has been declining since the late twentieth century, particularly over the Atlantic sector that encompasses the Barents–Kara Seas and Baffin Bay. This sea ice decline is attributable to various Arctic environmental changes, such as enhanced downward infrared (IR) radiation, preseason sea ice reduction, enhanced inflow of warm Atlantic water into the Arctic Ocean, and sea ice export. However, their relative contributions are uncertain. Utilizing ERA-Interim and satellite-based data, it is shown here that a positive trend of downward IR radiation accounts for nearly half of the sea ice concentration (SIC) decline during the 1979–2011 winter over the Atlantic sector. Furthermore, the study shows that the Arctic downward IR radiation increase is driven by horizontal atmospheric water flux and warm air advection into the Arctic, not by evaporation from the Arctic Ocean. These findings suggest that most of the winter SIC trends can be attributed to changes in the large-scale atmospheric circulations.


1984 ◽  
Vol 5 ◽  
pp. 61-68 ◽  
Author(s):  
T. Holt ◽  
P. M. Kelly ◽  
B. S. G. Cherry

Soviet plans to divert water from rivers flowing into the Arctic Ocean have led to research into the impact of a reduction in discharge on Arctic sea ice. We consider the mechanisms by which discharge reductions might affect sea-ice cover and then test various hypotheses related to these mechanisms. We find several large areas over which sea-ice concentration correlates significantly with variations in river discharge, supporting two particular hypotheses. The first hypothesis concerns the area where the initial impacts are likely to which is the Kara Sea. Reduced riverflow is associated occur, with decreased sea-ice concentration in October, at the time of ice formation. This is believed to be the result of decreased freshening of the surface layer. The second hypothesis concerns possible effects on the large-scale current system of the Arctic Ocean and, in particular, on the inflow of Atlantic and Pacific water. These effects occur as a result of changes in the strength of northward-flowing gradient currents associated with variations in river discharge. Although it is still not certain that substantial transfers of riverflow will take place, it is concluded that the possibility of significant cryospheric effects and, hence, large-scale climate impact should not be neglected.


2014 ◽  
Vol 8 (1) ◽  
pp. 845-885 ◽  
Author(s):  
R. K. Scharien ◽  
K. Hochheim ◽  
J. Landy ◽  
D. G. Barber

Abstract. Observed changes in the Arctic have motivated efforts to understand and model its components as an integrated and adaptive system at increasingly finer scales. Sea ice melt pond fraction, an important summer sea ice component affecting surface albedo and light transmittance across the ocean-sea ice–atmosphere interface, is inadequately parameterized in models due to a lack of large scale observations. In this paper, results from a multi-scale remote sensing program dedicated to the retrieval of pond fraction from satellite C-band synthetic aperture radar (SAR) are detailed. The study was conducted on first-year sea (FY) ice in the Canadian Arctic Archipelago during the summer melt period in June 2012. Approaches to retrieve the subscale FY ice pond fraction from mixed pixels in RADARSAT-2 imagery, using in situ, surface scattering theory, and image data are assessed. Each algorithm exploits the dominant effect of high dielectric free-water ponds on the VV/HH polarisation ratio (PR) at moderate to high incidence angles (about 40° and above). Algorithms are applied to four images corresponding to discrete stages of the seasonal pond evolutionary cycle, and model performance is assessed using coincident pond fraction measurements from partitioned aerial photos. A RMSE of 0.07, across a pond fraction range of 0.10 to 0.70, is achieved during intermediate and late seasonal stages. Weak model performance is attributed to wet snow (pond formation) and synoptically driven pond freezing events (all stages), though PR has utility for identification of these events when considered in time series context. Results demonstrate the potential of wide-swath, dual-polarisation, SAR for large-scale observations of pond fraction with temporal frequency suitable for process-scale studies and improvements to model parameterizations.


2012 ◽  
Vol 6 (2) ◽  
pp. 931-956 ◽  
Author(s):  
C. L. Parkinson ◽  
D. J. Cavalieri

Abstract. In sharp contrast to the decreasing sea ice coverage of the Arctic, in the Antarctic the sea ice cover has, on average, expanded since the late 1970s. More specifically, satellite passive-microwave data for the period November 1978–December 2010 reveal an overall positive trend in ice extents of 17 100 ± 2300 km2 yr−1. Much of the increase, at 13 700 ± 1500 km2 yr−1, has occurred in the region of the Ross Sea, with lesser contributions from the Weddell Sea and Indian Ocean. One region, that of the Bellingshausen/Amundsen Seas, has, like the Arctic, instead experienced significant sea ice decreases, with an overall ice extent trend of −8200 ± 1200 km2 yr−1. When examined through the annual cycle over the 32-yr period 1979–2010, the Southern Hemisphere sea ice cover as a whole experienced positive ice extent trends in every month, ranging in magnitude from a low of 9100 ± 6300 km2 yr−1 in February to a high of 24 700 ± 10 000 km2 yr−1 in May. The Ross Sea and Indian Ocean also had positive trends in each month, while the Bellingshausen/Amundsen Seas had negative trends in each month, and the Weddell Sea and Western Pacific Ocean had a mixture of positive and negative trends. Comparing ice-area results to ice-extent results, in each case the ice-area trend has the same sign as the ice-extent trend, but differences in the magnitudes of the two trends identify regions with overall increasing ice concentrations and others with overall decreasing ice concentrations. The strong pattern of decreasing ice coverage in the Bellingshausen/Amundsen Seas region and increasing ice coverage in the Ross Sea region is suggestive of changes in atmospheric circulation. This is a key topic for future research.


Elem Sci Anth ◽  
2017 ◽  
Vol 5 ◽  
Author(s):  
Ron Kwok ◽  
Shirley S. Pang ◽  
Sahra Kacimi

Understanding long-term changes in large-scale sea ice drift in the Southern Ocean is of considerable interest given its contribution to ice extent, to ice production in open waters, with associated dense water formation and heat flux to the atmosphere, and thus to the climate system. In this paper, we examine the trends and variability of this ice drift in a 34-year record (1982–2015) derived from satellite observations. Uncertainties in drift (~3 to 4 km day–1) were assessed with higher resolution observations. In a linear model, drift speeds were ~1.4% of the geostrophic wind from reanalyzed sea-level pressure, nearly 50% higher than that of the Arctic. This result suggests an ice cover in the Southern Ocean that is thinner, weaker, and less compact. Geostrophic winds explained all but ~40% of the variance in ice drift. Three spatially distinct drift patterns were shown to be controlled by the location and depth of atmospheric lows centered over the Amundsen, Riiser-Larsen, and Davis seas. Positively correlated changes in sea-level pressures at the three centers (up to 0.64) suggest correlated changes in the wind-driven drift patterns. Seasonal trends in ice edge are linked to trends in meridional winds and also to on-ice/off-ice trends in zonal winds, due to zonal asymmetry of the Antarctic ice cover. Sea ice area export at flux gates that parallel the 1000-m isobath were extended to cover the 34-year record. Interannual variability in ice export in the Ross and Weddell seas linked to the depth and location of the Amundsen Sea and Riiser-Larsen Sea lows to their east. Compared to shorter records, where there was a significant positive trend in Ross Sea ice area flux, the longer 34-year trends of outflow from both seas are now statistically insignificant.


Sign in / Sign up

Export Citation Format

Share Document