scholarly journals Ice–ocean interaction and calving front morphology at two west Greenland tidewater outlet glaciers

2014 ◽  
Vol 8 (4) ◽  
pp. 1457-1468 ◽  
Author(s):  
N. Chauché ◽  
A. Hubbard ◽  
J.-C. Gascard ◽  
J. E. Box ◽  
R. Bates ◽  
...  

Abstract. Warm, subtropical-originating Atlantic water (AW) has been identified as a primary driver of mass loss across the marine sectors of the Greenland Ice Sheet (GrIS), yet the specific processes by which this water mass interacts with and erodes the calving front of tidewater glaciers is frequently modelled and much speculated upon but remains largely unobserved. We present a suite of fjord salinity, temperature, turbidity versus depth casts along with glacial runoff estimation from Rink and Store glaciers, two major marine outlets draining the western sector of the GrIS during 2009 and 2010. We characterise the main water bodies present and interpret their interaction with their respective calving fronts. We identify two distinct processes of ice–ocean interaction which have distinct spatial and temporal footprints: (1) homogenous free convective melting which occurs across the calving front where AW is in direct contact with the ice mass, and (2) localised upwelling-driven melt by turbulent subglacial runoff mixing with fjord water which occurs at distinct injection points across the calving front. Throughout the study, AW at 2.8 ± 0.2 °C was consistently observed in contact with both glaciers below 450 m depth, yielding homogenous, free convective submarine melting up to ~200 m depth. Above this bottom layer, multiple interactions are identified, primarily controlled by the rate of subglacial fresh-water discharge which results in localised and discrete upwelling plumes. In the record melt year of 2010, the Store Glacier calving face was dominated by these runoff-driven plumes which led to a highly crenulated frontal geometry characterised by large embayments at the subglacial portals separated by headlands which are dominated by calving. Rink Glacier, which is significantly deeper than Store has a larger proportion of its submerged calving face exposed to AW, which results in a uniform, relatively flat overall frontal geometry.

2019 ◽  
Vol 13 (2) ◽  
pp. 723-734 ◽  
Author(s):  
Mathieu Morlighem ◽  
Michael Wood ◽  
Hélène Seroussi ◽  
Youngmin Choi ◽  
Eric Rignot

Abstract. Calving-front dynamics is an important control on Greenland's ice mass balance. Ice front retreat of marine-terminating glaciers may, for example, lead to a loss in resistive stress, which ultimately results in glacier acceleration and thinning. Over the past decade, it has been suggested that such retreats may be triggered by warm and salty Atlantic Water, which is typically found at a depth below 200–300 m. An increase in subglacial water discharge at glacier ice fronts due to enhanced surface runoff may also be responsible for an intensification of undercutting and calving. An increase in ocean thermal forcing or subglacial discharge therefore has the potential to destabilize marine-terminating glaciers along the coast of Greenland. It remains unclear which glaciers are currently stable but may retreat in the future and how far inland and how fast they will retreat. Here, we quantify the sensitivity and vulnerability of marine-terminating glaciers along the northwest coast of Greenland (from 72.5 to 76∘ N) to ocean forcing and subglacial discharge using the Ice Sheet System Model (ISSM). We rely on a parameterization of undercutting based on ocean thermal forcing and subglacial discharge and use ocean temperature and salinity from high-resolution ECCO2 (Estimating the Circulation and Climate of the Ocean, Phase II) simulations at the fjord mouth to constrain the ocean thermal forcing. The ice flow model includes a calving law based on a tensile von Mises criterion. We find that some glaciers, such as Dietrichson Gletscher or Alison Glacier, are sensitive to small increases in ocean thermal forcing, while others, such as Illullip Sermia or Cornell Gletscher, are remarkably stable, even in a +3 ∘C ocean warming scenario. Under the most intense experiment, we find that Hayes Gletscher retreats by more than 50 km inland by 2100 into a deep trough, and its velocity increases by a factor of 3 over only 23 years. The model confirms that ice–ocean interactions can trigger extensive and rapid glacier retreat, but the bed controls the rate and magnitude of the retreat. Under current oceanic and atmospheric conditions, we find that this sector of the Greenland ice sheet alone will contribute more than 1 cm to sea level rise and up to 3 cm by 2100 under the most extreme scenario.


2020 ◽  
Author(s):  
Jerry Lloyd ◽  
Louise Callard ◽  
Colm O'Cofaigh ◽  
David Roberts ◽  
Kaarina Weckstrom ◽  
...  

<p>Large sections of the Greenland Ice Sheet (GrIS) drain directly to the ocean through tidewater glaciers and are, therefore, sensitive to changes in ocean circulation through time. Recent research has identified the dynamic response of many tidewater glaciers draining the GrIS showing thinning, flow acceleration and, in many cases, the break-up and retreat of fringing ice shelves and calving margins. This instability has been linked to incursion of relatively warm Atlantic Water as well as increased air temperatures and sea-ice loss.</p><p>The Northeast Greenland Ice Stream (NEGIS) is one of the largest ice streams draining approximately 15% of the GrIS with a sea level equivalent of ~ 1.4 m. Recent observations have identified ice shelf loss and grounding line retreat of Zachariae Isstrom, the southern arm of the NEGIS, post 2010 suggesting this sector of the GrIS might be starting to respond to climate forcing. The primary aim of the ‘NEGIS’ project is to reconstruct the history of NEGIS since the Last Glacial Maximum (LGM) to improve our understanding of the interaction between NEGIS and climate (specifically ocean circulation). A series of sediment cores were collected along with bathymetric and sub-bottom profiler data concentrating on the Westwind and Norske Trough systems, two cross-shelf troughs originating from the present day margin of NEGIS. The data were collected through collaboration with the Alfred Wegener Institute as part of the GRIFF project supported by two cruises of the RV Polarstern in 2016 and 2017.</p><p>This presentation will focus on the deglaciation and palaeoceanographic evolution of the inner section of Norske Trough (inner continental shelf) investigating the interaction between ocean circulation and the dynamics of the tidewater margins of NEGIS. We present multiproxy results from a spliced box core and 10 m long gravity core collected from the same location covering the last 11,000 cal years. We use the benthic foraminiferal fauna and stable isotope signature to investigate variability in ocean circulation, specifically the relative strength of the Atlantic Water inflow along Norske Trough to the present day ice margin. We also investigate surface water conditions (including sea ice concentration) based on diatoms, dinoflagellates, IP<sub>25</sub> and planktic foraminiferal stable isotopes. Our benthic foraminiferal assemblages record the variability in strength of Atlantic Water flow since deglaciation indicating relatively strong Atlantic Water flux during deglaciation reaching a peak during the early Holocene. Surface water proxies indicate variability in meltwater flux and sea ice concentration from the early Holocene. These results provide the first evidence for a variable ocean circulation with the potential to influence ice margin dynamics during deglaciation and through the Holocene.</p>


2019 ◽  
Author(s):  
Flor Vermassen ◽  
Nanna Andreasen ◽  
David J. Wangner ◽  
Nicolas Thibault ◽  
Marit-Solveig Seidenkrantz ◽  
...  

Abstract. The mass loss from the Greenland Ice Sheet has increased over the past two decades. Marine-terminating glaciers contribute significantly to this mass loss due to increased melting and ice discharge. Rapid retreat periods of these tidewater glaciers have been linked to the concurrent inflow of warm, Atlantic derived waters. However, little is known about the variability of Atlantic-derived waters within these fjords, due to a lack of multi-annual, in situ measurements. Thus, to better understand the potential role of ocean warming on glacier retreat, reconstructions that characterize the variability of Atlantic water inflow to these fjords are required. Here, we investigate foraminiferal assemblages in a sediment core from Upernavik Fjord, West Greenland, in which the major ice stream Upernavik Isstrøm terminates. We investigate the environmental characteristics that control species diversity and derive that it is predominantly controlled by changes in bottom water variability. Hence, we provide a reconstruction of Atlantic water inflow to Upernavik Fjord, spanning the period 1925–2012. This reconstruction reveals peak Atlantic water inflow during the 1930s and again after 2000, a pattern that is similar to the Atlantic Multidecadal Oscillation (AMO). We compare these results to historical observations of front positions of Upernavik Isstrøm. This reveals that inflow of warm, Atlantic-derived waters indeed likely contributed to high retreat rates in the 1930s and after 2000. However, moderate retreat rates of Upernavik Isstrøm also prevailed in the 1960s/1970s, showing that retreat continued despite reduced Atlantic water inflow, albeit at a lower rate. Considering the link between bottom water variability and the AMO in Upernavik Fjord and the fact that a persistent negative phase of the AMO is expected for the next decade, Atlantic water inflow into the fjord may decrease in the next ~ 10 years.


1995 ◽  
Vol 43 (2) ◽  
pp. 125-132 ◽  
Author(s):  
Eiliv Larsen ◽  
Hans Petter Sejrup ◽  
Sigfus J. Johnsen ◽  
Karen Luise Knudsen

AbstractThe climatic evolution during the Eemian and the Holocene in western Europe is compared with the sea-surface conditions in the Norwegian Sea and with the oxygen-isotope-derived paleotemperature signal in the GRIP and Renland ice cores from Greenland. The records show a warm phase (ca. 3000 yr long) early in the Eemian (substage 5e). This suggests that the Greenland ice sheet, in general, recorded the climate in the region during this time. Rapid fluctuations during late stage 6 and late substage 5e in the GRIP ice core apparently are not recorded in the climatic proxies from western Europe and the Norwegian Sea. This may be due to low resolution in the terrestrial and marine records and/or long response time of the biotic changes. The early Holocene climatic optimum recorded in the terrestrial and marine records in the Norwegian Sea-NW European region is not found in the Summit (GRIP and GISP2) ice cores. However, this warm phase is recorded in the Renland ice core. Due to the proximity of Renland to the Norwegian Sea, this area is probably more influenced by changes in polar front positions which may partly explain this discrepancy. A reduction in the elevation at Summit during the Holocene may, however, be just as important. The high-amplitude shifts during substage 5e in the GRIP core could be due to Atlantic water oscillating closer to, and also reaching, the coast of East Greenland. During the Holocene, Atlantic water was generally located farther east in the Norwegian Sea than during the Eemian.


2021 ◽  
Vol 41 (2) ◽  
Author(s):  
Zhi Lin Ng ◽  
F. Javier Hernández-Molina ◽  
Débora Duarte ◽  
Francisco J. Sierro ◽  
Santiago Ledesma ◽  
...  

AbstractThe Mediterranean-Atlantic water mass exchange provides the ideal setting for deciphering the role of gateway evolution in ocean circulation. However, the dynamics of Mediterranean Outflow Water (MOW) during the closure of the Late Miocene Mediterranean-Atlantic gateways are poorly understood. Here, we define the sedimentary evolution of Neogene basins from the Gulf of Cádiz to the West Iberian margin to investigate MOW circulation during the latest Miocene. Seismic interpretation highlights a middle to upper Messinian seismic unit of transparent facies, whose base predates the onset of the Messinian salinity crisis (MSC). Its facies and distribution imply a predominantly hemipelagic environment along the Atlantic margins, suggesting an absence or intermittence of MOW preceding evaporite precipitation in the Mediterranean, simultaneous to progressive gateway restriction. The removal of MOW from the Mediterranean-Atlantic water mass exchange reorganized the Atlantic water masses and is correlated to a severe weakening of the Atlantic Meridional Overturning Circulation (AMOC) and a period of further cooling in the North Atlantic during the latest Miocene.


2002 ◽  
Vol 48 (161) ◽  
pp. 192-198 ◽  
Author(s):  
Peter G. Knight ◽  
Richard I. Waller ◽  
Carrie J. Patterson ◽  
Alison P. Jones ◽  
Zoe P. Robinson

AbstractSediment production at a terrestrial section of the ice-sheet margin in West Greenland is dominated by debris released through the basal ice layer. The debris flux through the basal ice at the margin is estimated to be 12–45 m3 m−1 a−1. This is three orders of magnitude higher than that previously reported for East Antarctica, an order of magnitude higher than sites reported from in Norway, Iceland and Switzerland, but an order of magnitude lower than values previously reported from tidewater glaciers in Alaska and other high-rate environments such as surging glaciers. At our site, only negligible amounts of debris are released through englacial, supraglacial or subglacial sediment transfer. Glaciofluvial sediment production is highly localized, and long sections of the ice-sheet margin receive no sediment from glaciofluvial sources. These findings differ from those of studies at more temperate glacial settings where glaciofluvial routes are dominant and basal ice contributes only a minor percentage of the debris released at the margin. These data on debris flux through the terrestrial margin of an outlet glacier contribute to our limited knowledge of debris production from the Greenland ice sheet.


Author(s):  
Ken X. Zhao ◽  
Andrew L. Stewart ◽  
James C. McWilliams

AbstractThe oceanic connections between tidewater glaciers and continental shelf waters are modulated and controlled by geometrically complex fjords. These fjords exhibit both overturning circulations and horizontal recirculations, driven by a combination of water mass transformation at the head of the fjord, variability on the continental shelf, and atmospheric forcing. However, it remains unclear which geometric and forcing parameters are the most important in exerting control on the overturning and horizontal recirculation. To address this, idealized numerical simulations are conducted using an isopycnal model of a fjord connected to a continental shelf, which is representative of regions in Greenland and the West Antarctic Peninsula. A range of sensitivity experiments demonstrate that sill height, wind direction/strength, subglacial discharge strength, and depth of offshore warm water are of first-order importance to the overturning circulation, while fjord width is also of leading importance to the horizontal recirculation. Dynamical predictions are developed and tested for the overturning circulation of the entire shelf-to-glacierface domain, subdivided into three regions: the continental shelf extending from the open ocean to the fjord mouth, the sill-overflow at the fjord mouth, and the plume-driven water mass transformation at the fjord head. A vorticity budget is also developed to predict the strength of the horizontal recirculation, which provides a scaling in terms of the overturning and bottom friction. Based on these theories, we may predict glacial melt rates that take into account overturning and recirculation, which may be used to refine estimates of ocean-driven melting of the Greenland and Antarctic ice sheets.


2021 ◽  
Author(s):  
Joanna Davies ◽  
Anders Møller Mathiasen ◽  
Kristiane Kristensen ◽  
Christof Pearce ◽  
Marit-Solveig Seidenkrantz

<p>The polar regions exhibit some of the most visible signs of climate change globally; annual mass loss from the Greenland Ice Sheet (GrIS) has quadrupled in recent decades, from 51 ± 65 Gt yr<sup>−1</sup> (1992-2001) to 211 ± 37 Gt yr<sup>−1</sup> (2002-2011). This can partly be attributed to the widespread retreat and speed-up of marine-terminating glaciers. The Zachariae Isstrøm (ZI) is an outlet glacier of the Northeast Greenland Ice Steam (NEGIS), one of the largest ice streams of the GrIS (700km), draining approximately 12% of the ice sheet interior. Observations show that the ZI began accelerating in 2000, resulting in the collapse of the floating ice shelf between 2002 and 2003. By 2014, the ice shelf extended over an area of 52km<sup>2</sup>, a 95% decrease in area since 2002, where it extended over 1040km<sup>2</sup>. Paleo-reconstructions provide an opportunity to extend observational records in order to understand the oceanic and climatic processes governing the position of the grounding zone of marine terminating glaciers and the extent of floating ice shelves. Such datasets are thus necessary if we are to constrain the impact of future climate change projections on the Arctic cryosphere.</p><p>A multi-proxy approach, involving grain size, geochemical, foraminiferal and sedimentary analysis was applied to marine sediment core DA17-NG-ST8-92G, collected offshore of the ZI, on  the Northeast Greenland Shelf. The aim was to reconstruct changes in the extent of the ZI and the palaeoceanographic conditions throughout the Early to Mid Holocene (c.a. 12,500-5,000 cal. yrs. BP). Evidence from the analysis of these datasets indicates that whilst there has been no grounded ice at the site over the last 12,500 years, the ice shelf of the ZI extended as a floating ice shelf over the site between 12,500 and 9,200 cal. yrs. BP, with the grounding line further inland from our study site. This was followed by a retreat in the ice shelf extent during the Holocene Thermal Maximum; this was likely to have been governed, in part, by basal melting driven by Atlantic Water (AW) recirculated from Svalbard or from the Arctic Ocean. Evidence from benthic foraminifera suggest that there was a shift from the dominance of AW to Polar Water at around 7,500 cal. yrs. BP, although the ice shelf did not expand again despite of this cooling of subsurface waters.</p>


2016 ◽  
Vol 20 (3) ◽  
pp. 1177-1195 ◽  
Author(s):  
Huayang Cai ◽  
Hubert H. G. Savenije ◽  
Chenjuan Jiang ◽  
Lili Zhao ◽  
Qingshu Yang

Abstract. The mean water level in estuaries rises in the landward direction due to a combination of the density gradient, the tidal asymmetry, and the backwater effect. This phenomenon is more prominent under an increase of the fresh water discharge, which strongly intensifies both the tidal asymmetry and the backwater effect. However, the interactions between tide and river flow and their individual contributions to the rise of the mean water level along the estuary are not yet completely understood. In this study, we adopt an analytical approach to describe the tidal wave propagation under the influence of substantial fresh water discharge, where the analytical solutions are obtained by solving a set of four implicit equations for the tidal damping, the velocity amplitude, the wave celerity, and the phase lag. The analytical model is used to quantify the contributions made by tide, river, and tide–river interaction to the water level slope along the estuary, which sheds new light on the generation of backwater due to tide–river interaction. Subsequently, the method is applied to the Yangtze estuary under a wide range of river discharge conditions where the influence of both tidal amplitude and fresh water discharge on the longitudinal variation of the mean tidal water level is explored. Analytical model results show that in the tide-dominated region the mean water level is mainly controlled by the tide–river interaction, while it is primarily determined by the river flow in the river-dominated region, which is in agreement with previous studies. Interestingly, we demonstrate that the effect of the tide alone is most important in the transitional zone, where the ratio of velocity amplitude to river flow velocity approaches unity. This has to do with the fact that the contribution of tidal flow, river flow, and tide–river interaction to the residual water level slope are all proportional to the square of the velocity scale. Finally, we show that, in combination with extreme-value theory (e.g. generalized extreme-value theory), the method may be used to obtain a first-order estimation of the frequency of extreme water levels relevant for water management and flood control. By presenting these analytical relations, we provide direct insight into the interaction between tide and river flow, which will be useful for the study of other estuaries that experience substantial river discharge in a tidal region.


Sign in / Sign up

Export Citation Format

Share Document