scholarly journals Glaciological and geodetic mass balance of ten long-term glaciers in Norway

2015 ◽  
Vol 9 (6) ◽  
pp. 6581-6626 ◽  
Author(s):  
L. M. Andreassen ◽  
H. Elvehøy ◽  
B. Kjøllmoen ◽  
R. V. Engeset

Abstract. The glaciological and geodetic methods provide independent observations of glacier mass balance. The glaciological method measures the surface mass balance, on a seasonal or annual basis, whereas the geodetic method measures surface, internal and basal mass balances, over a period of years or decades. In this paper, we reanalyse the 10 glaciers with long-term mass balance series in Norway. The reanalysis includes (i) homogenisation of both glaciological and geodetic observation series, (ii) uncertainty assessment, (iii) estimates of generic differences including estimates of internal and basal melt, (iv) validation, and (v) partly calibration of mass balance series. This study comprises an extensive set of data (454 mass balance years, 34 geodetic surveys and large volumes of supporting data, such as metadata and field notes). In total, 21 periods of data were compared and the results show discrepancies between the glaciological and geodetic methods for some glaciers, which in part are attributed to internal and basal ablation and in part to inhomogeneity in the data processing. Deviations were smaller than 0.2 m w.e. a−1 for 12 out of 21 periods. Calibration was applied to seven out of 21 periods, as the deviations were larger than the uncertainty. The reanalysed glaciological series shows a more consistent signal of glacier change over the period of observations than previously reported: six glaciers had a significant mass loss (14–22 m w.e.) and four glaciers were nearly in balance. All glaciers have lost mass after year 2000. More research is needed on the sources of uncertainty, to reduce uncertainties and adjust the observation programmes accordingly. The study confirms the value of carrying out independent high-quality geodetic surveys to check and correct field observations.

2016 ◽  
Vol 10 (2) ◽  
pp. 535-552 ◽  
Author(s):  
Liss M. Andreassen ◽  
Hallgeir Elvehøy ◽  
Bjarne Kjøllmoen ◽  
Rune V. Engeset

Abstract. Glaciological and geodetic methods provide independent observations of glacier mass balance. The glaciological method measures the surface mass balance, on a seasonal or annual basis, whereas the geodetic method measures surface, internal, and basal mass balances, over a period of years or decades. In this paper, we reanalyse the 10 glaciers with long-term mass-balance series in Norway. The reanalysis includes (i) homogenisation of both glaciological and geodetic observation series, (ii) uncertainty assessment, (iii) estimates of generic differences including estimates of internal and basal melt, (iv) validation, and, if needed, (v) calibration of mass-balance series. This study comprises an extensive set of data (484 mass-balance years, 34 geodetic surveys, and large volumes of supporting data, such as metadata and field notes). In total, 21 periods of data were compared and the results show discrepancies between the glaciological and geodetic methods for some glaciers, which are attributed in part to internal and basal ablation and in part to inhomogeneity in the data processing. Deviations were smaller than 0.2 m w.e. a−1 for 12 out of 21 periods. Calibration was applied to 7 out of 21 periods, as the deviations were larger than the uncertainty. The reanalysed glaciological series shows a more consistent signal of glacier change over the period of observations than previously reported: six glaciers had a significant mass loss (14–22 m w.e.) and four glaciers were nearly in balance. All glaciers have lost mass after the year 2000. More research is needed on the sources of uncertainty to reduce uncertainties and adjust the observation programmes accordingly. The study confirms the value of carrying out independent high-quality geodetic surveys to check and correct field observations.


2019 ◽  
Vol 13 (9) ◽  
pp. 2361-2383 ◽  
Author(s):  
Chunhai Xu ◽  
Zhongqin Li ◽  
Huilin Li ◽  
Feiteng Wang ◽  
Ping Zhou

Abstract. The direct glaciological method provides in situ observations of annual or seasonal surface mass balance, but can only be implemented through a succession of intensive in situ measurements of field networks of stakes and snow pits. This has contributed to glacier surface mass-balance measurements being sparse and often discontinuous in the Tien Shan. Nevertheless, long-term glacier mass-balance measurements are the basis for understanding climate–glacier interactions and projecting future water availability for glacierized catchments in the Tien Shan. Riegl VZ®-6000 long-range terrestrial laser scanner (TLS), typically using class 3B laser beams, is exceptionally well suited for repeated glacier mapping, and thus determination of annual and seasonal geodetic mass balance. This paper introduces the applied TLS for monitoring summer and annual surface elevation and geodetic mass changes of Urumqi Glacier No. 1 as well as delineating accurate glacier boundaries for 2 consecutive mass-balance years (2015–2017), and discusses the potential of such technology in glaciological applications. Three-dimensional changes of ice and firn–snow bodies and the corresponding densities were considered for the volume-to-mass conversion. The glacier showed pronounced thinning and mass loss for the four investigated periods; glacier-wide geodetic mass balance in the mass-balance year 2015–2016 was slightly more negative than in 2016–2017. Statistical comparison shows that agreement between the glaciological and geodetic mass balances can be considered satisfactory, indicating that the TLS system yields accurate results and has the potential to monitor remote and inaccessible glacier areas where no glaciological measurements are available as the vertical velocity component of the glacier is negligible. For wide applications of the TLS in glaciology, we should use stable scan positions and in-situ-measured densities of snow–firn to establish volume-to-mass conversion.


2019 ◽  
Author(s):  
Álvaro Ayala ◽  
David Farías-Barahona ◽  
Matthias Huss ◽  
Francesca Pellicciotti ◽  
James McPhee ◽  
...  

Abstract. As glaciers adjust their size in response to climate variations, long-term changes in meltwater production can be expected, affecting the local availability of water resources. We investigate glacier runoff in the period 1955–2016 in the Maipo River Basin (4 843 km2), semiarid Andes of Chile. The basin contains more than 800 glaciers covering 378 km2 (inventoried in 2000). We model the mass balance and runoff contribution of 26 glaciers with the physically-oriented and fully-distributed TOPKAPI-ETH glacio-hydrological model, and extrapolate the results to the entire basin. TOPKAPI-ETH is run using several glaciological and meteorological datasets, and its results are evaluated against streamflow records, remotely-sensed snow cover and geodetic mass balances for the periods 1955–2000 and 2000–2013. Results show that glacier mass balance had a general decreasing trend as a basin average, but with differences between the main sub-catchments. Glacier volume decreased by one fifth (from 18.6 ± 4.5 to 14.9 ± 2.9 km3). Runoff from the initially glacierized areas was 186 ± 27 mm yr−1 (17 ± 7 % of the total contributions to the basin), but it shows a decreasing sequence of maxima, which can be linked to the interplay between a decrease in precipitation since the 1980s and the reduction of ice melt. If glaciers in the basin were in equilibrium with the climate of the last two decades, their volume would be reduced to 81 ± 38 % of the year 2000 volume, and glacier runoff during dry periods would be 61 ± 24 % of its maximum contribution in the period 1955–2016, considerably decreasing the drought mitigation capacity of the basin.


2010 ◽  
Vol 4 (3) ◽  
pp. 1151-1194
Author(s):  
A. Fischer

Abstract. Glacier mass balance is measured with the direct or the geodetic method. In this study, the geodetic mass balances of six Austrian glaciers in 19 periods between 1953 and 2006 are compared to the direct mass balances in the same periods. The mean annual geodetic mass balance for all periods is −0.5 m w.e./year. The mean difference between the geodetic and the direct data is −0.7 m w.e., the minimum −7.3 m w.e. and the maximum 5.6 m w.e. The accuracy of geodetic mass balance resulting from the accuracy of the DEMs ranges from 2 m w.e. for photogrammetric data to 0.002 m w.e. for LIDAR data. Basal melt, seasonal snow cover and density changes of the surface layer contribute up to 0.7 m w.e. for the period of 10 years to the difference to the direct method. The characteristics of published data of Griesgletscher, Gulkana Glacier, Lemon Creek glacier, South Cascade, Storbreen, Storglaciären, and Zongo Glacier is similar to these Austrian glaciers. For 26 analyzed periods with an average length of 18 years the mean difference between the geodetic and the direct data is −0.4 m w.e., the minimum −7.2 m w.e. and the maximum 3.6 m w.e. Longer periods between the acquisition of the DEMs do not necessarily result in a higher accuracy of the geodetic mass balance. Specific glaciers show specific trends of the difference between the direct and the geodetic data according to their type and state. In conclusion, geodetic and direct mass balance data are complementary, but differ systematically.


2022 ◽  
Vol 14 (2) ◽  
pp. 272
Author(s):  
Chunhai Xu ◽  
Zhongqin Li ◽  
Feiteng Wang ◽  
Jianxin Mu ◽  
Xin Zhang

The eastern Tien Shan hosts substantial mid-latitude glaciers, but in situ glacier mass balance records are extremely sparse. Haxilegen Glacier No. 51 (eastern Tien Shan, China) is one of the very few well-measured glaciers, and comprehensive glaciological measurements were implemented from 1999 to 2011 and re-established in 2017. Mass balance of Haxilegen Glacier No. 51 (1999–2015) has recently been reported, but the mass balance record has not extended to the period before 1999. Here, we used a 1:50,000-scale topographic map and long-range terrestrial laser scanning (TLS) data to calculate the area, volume, and mass changes for Haxilegen Glacier No. 51 from 1964 to 2018. Haxilegen Glacier No. 51 lost 0.34 km2 (at a rate of 0.006 km2 a−1 or 0.42% a−1) of its area during the period 1964–2018. The glacier experienced clearly negative surface elevation changes and geodetic mass balance. Thinning occurred almost across the entire glacier surface, with a mean value of −0.43 ± 0.12 m a−1. The calculated average geodetic mass balance was −0.36 ± 0.12 m w.e. a−1. Without considering the error bounds of mass balance estimates, glacier mass loss over the past 50 years was in line with the observed and modeled mass balance (−0.37 ± 0.22 m w.e. a−1) that was published for short time intervals since 1999 but was slightly less negative than glacier mass loss in the entire eastern Tien Shan. Our results indicate that Riegl VZ®-6000 TLS can be widely used for mass balance measurements of unmonitored individual glaciers.


2020 ◽  
Vol 14 (6) ◽  
pp. 2005-2027 ◽  
Author(s):  
Álvaro Ayala ◽  
David Farías-Barahona ◽  
Matthias Huss ◽  
Francesca Pellicciotti ◽  
James McPhee ◽  
...  

Abstract. As glaciers adjust their size in response to climate variations, long-term changes in meltwater production can be expected, affecting the local availability of water resources. We investigate glacier runoff in the period 1955–2016 in the Maipo River basin (4843 km2, 33.0–34.3∘ S, 69.8–70.5∘ W), in the semiarid Andes of Chile. The basin contains more than 800 glaciers, which cover 378 km2 in total (inventoried in 2000). We model the mass balance and runoff contribution of 26 glaciers with the physically oriented and fully distributed TOPKAPI (Topographic Kinematic Approximation and Integration)-ETH glacio-hydrological model and extrapolate the results to the entire basin. TOPKAPI-ETH is run at a daily time step using several glaciological and meteorological datasets, and its results are evaluated against streamflow records, remotely sensed snow cover, and geodetic mass balances for the periods 1955–2000 and 2000–2013. Results show that in 1955–2016 glacier mass balance had a general decreasing trend as a basin average but also had differences between the main sub-catchments. Glacier volume decreased by one-fifth (from 18.6±4.5 to 14.9±2.9 km3). Runoff from the initially glacierized areas was 177±25 mm yr−1 (16±7 % of the total contributions to the basin), but it shows a decreasing sequence of maxima, which can be linked to the interplay between a decrease in precipitation since the 1980s and the reduction of ice melt. Glaciers in the Maipo River basin will continue retreating because they are not in equilibrium with the current climate. In a hypothetical constant climate scenario, glacier volume would reduce to 81±38 % of the year 2000 volume, and glacier runoff would be 78±30 % of the 1955–2016 average. This would considerably decrease the drought mitigation capacity of the basin.


2015 ◽  
Vol 9 (1) ◽  
pp. 1133-1175 ◽  
Author(s):  
J. Gabbi ◽  
M. Huss ◽  
A. Bauder ◽  
F. Cao ◽  
M. Schwikowski

Abstract. Light-absorbing impurities in snow and ice control glacier melt as shortwave radiation represents the main component of the surface energy balance. Here, we investigate the long-term effect of snow impurities, i.e. Saharan dust and black carbon (BC), on albedo and glacier mass balance. The analysis was performed over the period 1914–2014 for two sites on Claridenfirn, Swiss Alps, where an outstanding 100 year record of seasonal mass balance measurements is available. Information on atmospheric deposition of mineral dust and BC over the last century was retrieved from two firn/ice cores of high-alpine sites. A combined mass balance and snow/firn layer model was employed to assess the dust/BC-albedo feedback. Compared to pure snow conditions, the presence of Saharan dust and BC lowered the mean annual albedo by 0.04–0.06 and increased melt by 15–19% on average depending on the location on the glacier. BC clearly dominated absorption which is about three times higher than that of mineral dust. The upper site has experienced mainly positive mass balances and impurity layers were continuously buried whereas at the lower site, surface albedo was more strongly influenced by re-exposure of dust-enriched layers due to frequent years with negative mass balances.


Water ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1847 ◽  
Author(s):  
Fang Zou ◽  
Robert Tenzer ◽  
Hok Fok ◽  
Janet Nichol

The Greenland Ice Sheet (GrIS) is losing mass at a rate that represents a major contribution to global sea-level rise in recent decades. In this study, we use the Gravity Recovery and Climate Experiment (GRACE) data to retrieve the time series variations of the GrIS from April 2002 to June 2017. We also estimate the mass balance from the RACMO2.3 and ice discharge data in order to obtain a comparative analysis and cross-validation. A detailed analysis of long-term trend and seasonal and inter-annual changes in the GrIS is implemented by GRACE and surface mass balance (SMB) modeling. The results indicate a decrease of −267.77 ± 8.68 Gt/yr of the GrIS over the 16-year period. There is a rapid decline from 2002 to 2008, which accelerated from 2009 to 2012 before declining relatively slowly from 2013 to 2017. The mass change inland is significantly smaller than that detected along coastal regions, especially in the southeastern, southwestern, and northwestern regions. The mass balance estimates from GRACE and SMB minus ice discharge (SMB-D) are very consistent. The ice discharge manifests itself mostly as a long-term trend, whereas seasonal mass variations are largely attributed to surface mass processes. The GrIS mass changes are mostly attributed to mass loss during summer. Summer mass changes are highly correlated with climate changes.


2019 ◽  
Vol 65 (252) ◽  
pp. 565-579 ◽  
Author(s):  
WILLIAM KOCHTITZKY ◽  
HESTER JISKOOT ◽  
LUKE COPLAND ◽  
ELLYN ENDERLIN ◽  
ROBERT MCNABB ◽  
...  

ABSTRACTDonjek Glacier has an unusually short and regular surge cycle, with eight surges identified since 1935 from aerial photographs and satellite imagery with a ~12 year repeat interval and ~2 year active phase. Recent surges occurred during a period of long-term negative mass balance and cumulative terminus retreat of 2.5 km since 1874. In contrast to previous work, we find that the constriction where the valley narrows and bedrock lithology changes, 21 km from the terminus, represents the upper limit of surging, with negligible surface speed or elevation change up-glacier from this location. This positions the entire surge-type portion of the glacier in the ablation zone. The constriction geometry does not act as the dynamic balance line, which we consistently find at 8 km from the glacier terminus. During the 2012–2014 surge event, the average lowering rate in the lowest 21 km of the glacier was 9.6 m a−1, while during quiescence it was 1.0 m a−1. Due to reservoir zone refilling, the ablation zone has a positive geodetic balance in years immediately following a surge event. An active surge phase can result in a strongly negative geodetic mass balance over the surge-type portion of the glacier.


2019 ◽  
Vol 65 (252) ◽  
pp. 605-616 ◽  
Author(s):  
SOJIRO SUNAKO ◽  
KOJI FUJITA ◽  
AKIKO SAKAI ◽  
RIJAN B. KAYASTHA

ABSTRACTWe conducted a mass-balance study of debris-free Trambau Glacier in the Rolwaling region, Nepal Himalaya, which is accessible to 6000 m a.s.l., to better understand mass-balance processes and the effect of precipitation on these processes on high-elevation Himalayan glaciers. Continuous in situ meteorological and mass-balance observations that spanned the three melt seasons from May 2016 are reported. An energy- and mass-balance model is also applied to evaluate its performance and sensitivity to various climatic conditions. Glacier-wide mass balances ranging from −0.34 ± 0.38 m w.e. in 2016 to −0.82 ± 0.53 m w.e. in 2017/18 are obtained by combining the observations with model results for the areas above the highest stake. The estimated long-term glacier mass balance, which is reconstructed using the ERA-Interim data calibrated with in situ data, is −0.65 ± 0.39 m w.e. a−1for the 1980–2018 period. A significant correlation with annual precipitation (r= 0.77,p< 0.001) is observed, whereas there is no discernible correlation with summer mean air temperature. The results indicate the continuous mass loss of Trambau Glacier over the last four decades, which contrasts with the neighbouring Mera Glacier in balance.


Sign in / Sign up

Export Citation Format

Share Document