scholarly journals Study of the Gametophytic phase of Diplazium caudatum (Athyriaceae, Polypodiopsida) from Spain

2021 ◽  
Vol 45 ◽  
pp. e73313
Author(s):  
David Martín Alonso ◽  
Sonia Molino de Miguel ◽  
Andrea Seral ◽  
José María Gabriel y Galán

The gametophytes of the Athyriaceae are not very well known, such as Diplazium caudatum. The aim of this work is to analyze the gametophytic phase of this species, which includes germination study, morphological development and reproductive phase. Spores belonging to two different sporophytes from La Gomera, Spain, were mixed and sown in multisporic cultures. Plates have been cultured in chambers with nutritive agar at 25ºC and 12 hours photoperiod. The germination was registered every three days, and the main vegetative and reproductive development was checked throughout the observational period. The germination rate reached a maximum of 58%. The spore germination followed a Vittaria pattern meanwhile prothallial development followed an Adiantum type. Regarding sexual expression, all gametophytes developed archegonia and later some of them developed antheridia becoming bisexual.

2002 ◽  
Vol 80 (8) ◽  
pp. 892-898 ◽  
Author(s):  
G Q Li ◽  
H C Huang ◽  
S N Acharya

Assays on mycelial growth and spore germination were carried out to determine the sensitivity of the biocontrol agents Ulocladium atrum and Coniothyrium minitans and the plant pathogen Sclerotinia sclerotiorum to benomyl and vinclozolin. Ulocladium atrum was more tolerant to these fungicides than C. minitans and S. sclerotiorum. The 50% effective concentration (EC50) of U. atrum based on the mycelial growth inhibition was 1467.3 µg active ingredient (a.i.)/mL for benomyl and 12.6 µg a.i./mL for vinclozolin, and the maximum inhibition concentration was higher than 4000 µg a.i./mL for both fungicides. For C. minitans and S. sclerotiorum, however, the EC50 based on mycelial growth inhibition was lower than 1 µg a.i./mL. After incubation for 24 h at 20°C, the germination rate of U. atrum conidia was 90–99% on potato dextrose agar (PDA) amended with benomyl at 100–500 µg a.i./mL or vinclozolin at 10–500 µg a.i./mL. At these concentrations, germ tubes of U. atrum developed into long, branched hyphae in benomyl treatments, but they remained short and clustered in vinclozolin treatments. Pycnidiospores of C. minitans and ascospores of S. sclerotiorum germinated on PDA amended with benomyl at 100–500 µg a.i./mL, but the germ tubes did not grow further. Spore germination of C. minitans and S. sclerotiorum was less than 3.2% on PDA amended with vinclozolin at 10–500 µg a.i./mL after 24 h. This is the first report on the sensitivity of U. atrum and C. minitans to benomyl and vinclozolin. The results suggest that it is possible to control S. sclerotiorum using a combination of U. atrum and benomyl or vinclozolin.Key words: fungicides, mycelial growth, spore germination, integrated pest management.


2013 ◽  
Vol 62 (9) ◽  
pp. 1405-1413 ◽  
Author(s):  
P. Moore ◽  
L. Kyne ◽  
A. Martin ◽  
K. Solomon

Spore germination is an important part of the pathogenesis of Clostridium difficile infection (CDI). Spores are resistant to antibiotics, including those therapeutically administered for CDI and strains with a high germination rate are significantly more likely to be implicated in recurrent CDI. The role of germination efficiency in cases of refractory CDI where first-line therapy fails remains unclear. We investigated spore germination efficiencies of clinical C. difficile isolates by measuring drop in OD600 and colony forming efficiency. Ribotype 027 isolates exhibited significantly higher germination efficiencies in the presence of 0.1 % (w/v) sodium taurocholate (51.66±8.75 %; 95 % confidence interval (CI) 47.37–55.95 %) than ribotype 106 (41.91±8.35 %; 95 % CI 37.82–46 %) (P<0.05) and ribotype 078 (42.07±8.57 %, 95 % CI 37.22–46.92 %) (P<0.05). Spore outgrowth rates were comparable between the ribotype groups but the exponential phase occurred approximately 4 h later in the absence of sodium taurocholate. Spore germination efficiencies for isolates implicated in severe CDI were significantly higher (49.68±10.00 %, 95 % CI 47.06–52.30 %) than non-severe CDI (40.92±9.29 %, 95 % CI 37.48–44.36 %); P<0.01. Germination efficiencies were also significantly higher in recurrent CDI or when metronidazole therapy failed than when therapy was successful [(49.00±10.49 %, 95 % CI 46.25–51.75 %) versus (41.42±9.43 %, 95 % CI 37.93–44.91 %); P<0.01]. This study suggests an important link between C. difficile spore germination, CDI pathogenesis and response to treatment; however, further work is warranted before the complex interplay between germination dynamics and CDI outcome can be fully understood.


1965 ◽  
Vol 16 (6) ◽  
pp. 903 ◽  
Author(s):  
JH Silsbury

The responses of Lolium rigidum Gaud. and L. perenne L. to low temperature seed vernalization were determined by comparing the growth and development of vernalized and unvernalized plants raised in the field and in a controlled environment cabinet. Vernalization did not appear to influence growth in the vegetative phase, but usually induced earlier heading and a greater proportion of reproductive tillers. Comparisons of vernalized (reproductive) and unvernalized (vegetative) plants show increased reproductive development to be associated with higher growth rates, lower tillering, and greater weight per tiller. High growth rates during the reproductive phase are considered to be due to the ability of reproductive tillers to grow more rapidly than vegetative tillers through the growth of true stem functioning as a "sink" for assimilate. Generalized growth curves for vernalized and unvernalized ryegrass grown under long days are presented and discussed.


2005 ◽  
Vol 187 (10) ◽  
pp. 3593-3598 ◽  
Author(s):  
Yoshio Kimura ◽  
Mika Ohtani ◽  
Kaoru Takegawa

ABSTRACT We have previously reported that a receptor-type adenylyl cyclase (CyaA) of Myxococcus xanthus undergoes an osmosensor mainly during spore germination (Y. Kimura et al., J. Bacteriol. 184:3578-3585, 2002). In the present study, we cloned another receptor-type adenylyl cyclase gene (cyaB) and characterized the function of the cyaB-encoded protein. Disruption of cyaB generates a mutant that showed growth retardation at high ionic (NaCl) or high nonionic (sucrose) osmolarity. When vegetative cells were stimulated with 0.15 M NaCl, the increases in intracellular cyclic AMP levels of cyaB mutant cells were lower than those of wild-type cells. Under nonionic osmostress, the cyaB mutant exhibited reduced spore germination; however, the germination rate of the cyaB mutant was significantly higher than that of the cyaA mutant.


2015 ◽  
Vol 198 (5) ◽  
pp. 777-786 ◽  
Author(s):  
Disha Bhattacharjee ◽  
Michael B. Francis ◽  
Xicheng Ding ◽  
Kathleen N. McAllister ◽  
Ritu Shrestha ◽  
...  

ABSTRACTClostridium difficilespore germination is essential for colonization and disease. The signals that initiateC. difficilespore germination are a combination of taurocholic acid (a bile acid) and glycine. Interestingly, the chenodeoxycholic acid class (CDCA) bile acids competitively inhibit taurocholic acid-mediated germination, suggesting that compounds that inhibit spore germination could be developed into drugs that prophylactically preventC. difficileinfection or reduce recurring disease. However, a recent report called into question the utility of such a strategy to prevent infection by describingC. difficilestrains that germinated in the apparent absence of bile acids or germinated in the presence of the CDCA inhibitor. Because the mechanisms ofC. difficilespore germination are beginning to be elucidated, the mechanism of germination in these particular strains could yield important information on howC. difficilespores initiate germination. Therefore, we quantified the interaction of these strains with taurocholic acid and CDCA, the rates of spore germination, the release of DPA from the spore core, and the abundance of the germinant receptor complex (CspC, CspB, and SleC). We found that strains previously observed to germinate in the absence of taurocholic acid correspond to more potent 50% effective concentrations (EC50values; the concentrations that achieve a half-maximum germination rate) of the germinant and are still inhibited by CDCA, possibly explaining the previous observations. By comparing the germination kinetics and the abundance of proteins in the germinant receptor complex, we revised our original model for CspC-mediated activation of spore germination and propose that CspC may activate spore germination and then inhibit downstream processes.IMPORTANCEClostridium difficileforms metabolically dormant spores that persist in the health care environment. In susceptible hosts,C. difficilespores germinate in response to certain bile acids and glycine. Blocking germination byC. difficilespores is an attractive strategy to prevent the initiation of disease or to block recurring infection. However, certainC. difficilestrains have been identified whose spores germinate in the absence of bile acids or are not blocked by known inhibitors ofC. difficilespore germination (calling into question the utility of such strategies). Here, we further investigate these strains and reestablish that bile acid activators and inhibitors of germination affect these strains and use these data to suggest another role for theC. difficilebile acid germinant receptor.


Botany ◽  
2016 ◽  
Vol 94 (4) ◽  
pp. 311-320 ◽  
Author(s):  
Shota Nakano ◽  
Qi Gao ◽  
Tadanori Aimi ◽  
Norihiro Shimomura

Rhizopogon roseolus (Corda) Th. Fr. is a basidiomycete truffle that is considered edible. Its gleba changes color from white to beige to brown as it matures. Although ultrastructural changes in the spore wall have been linked to the maturation of the fruiting body, little is known regarding the relationship between spore germination success and the ultrastructure of the spore wall. We examined spore germination on agar plates and analyzed the spore wall ultrastructure using transmission electron microscopy (TEM). Fruiting bodies, collected from a pine forest, were classified into three developmental stages based on gleba color, and the germination success was evaluated at each stage. Variability in the spore germination rate was observed between individual fruiting bodies. The peak germination rate was recorded for the spores from the fruiting bodies in the beige glebal stage, and the rate was lower in the brown glebal stage. When spore wall structures were studied using TEM, the spore wall was found to be multilayered upon maturation of the fruiting body. The spores of the beige glebal stage showed three types of spore walls, namely two-layered, three-layered, and four-layered spore walls. On the other hand, the spores of the brown glebal stage showed predominantly four-layered spore walls. These results indicate that spore germination of R. roseolus decreases as the fruiting body matures and the spore wall becomes more complex.


2016 ◽  
Vol 25 (3) ◽  
pp. e067 ◽  
Author(s):  
Aranzazu Gomez-Garay ◽  
Beatriz Pintos ◽  
José Antonio Manzanera ◽  
Carmen Prada ◽  
Luisa Martin ◽  
...  

Aim of study: The effect of cerium oxide engineered nanoparticles on the spore germination of the fern. Asplenium adiantum-nigrum.Area of study: France, Britanny Region, Finistére Department, Plougonvelin, in rocks near the sea.Material and methods: Asplenium spores were cultured in vitro on agar medium with Nano-CeO2 (less than 25 nm particle size) and bulk-CeO2. The addition of each nano- and bulk particles ranged from 0 to 3000 mg L-1. Observations on rhizoidal and prothallial cells during first stages of gametophyte development were made. The No-Observed-Adverse-Effect concentration (NOAEC) and Lowest-Observed-Adverse-Effect-Concentration (LOEC) values for spore germination rate data were analyzed. Main results: Germination was speeded up by 100 to 2000 mg L-1 nanoceria, while bulk cerium oxide had the same effect for 500 to 200 mg L-1 concentrations. Present results showed cellular damage in the protonema while rhizoid cells seemed not to be affected, as growth and membrane integrity remained.Research highlights: Both nanosized and bulk cerium oxide are toxic for the fern Asplenium adiantum-nigrum, although diverse toxicity patterns were shown for both materials. Diverse toxic effects have been observed: chloroplast membrane damage and lysis, cell wall and membrane disruption which leads to cell lysis; and alterations in morphology and development.Keywords: Nanoparticles; rhizoid; prothallus; chloroplast; fern.


2014 ◽  
Vol 955-959 ◽  
pp. 248-252
Author(s):  
Guang Xiang Zhuo ◽  
Zhong Dong Wang ◽  
Yan Zhang

Bird Nest Fern is a perennial evergreen large epiphytic or herb. Under natural conditions, most nest fern spores lack of suitable conditions for germination, and because of certain conditions are not met and stop growth. the people digging improperly on the Nest Fern ,the Nest Fern resources have been severely damaged, in order to protect the Nest Fern natural resources .we should strengthen the cultivation of nest fern. This study were different amount of coconut husk, different concentrations of 6-BA and different concentrations of GA3 nest fern spore germination test, results are as follows:When the Coconut husk amount of certain nest fern spore germination rate increased with increasing concentration of 6-BA,6-BA concentration of 0.7mg/L,the spore germination rate of 6.25%. Concentration of 6-BA, nest fern spore germination rate increased with the coconut husk increased. When the coconut husk volume and 6-BA concentration must soak spores with different concentrations of GA3 12~15min, nest fern spore germination with GA3 concentration increases, by analysis of variance, GA3 concentration of 200 mg/L, can greatly enhance spore germination rate; Three true leaves of seedlings grown by transplanting, and has successfully bred a number of nest fern seedlings.


2021 ◽  
Vol 12 ◽  
Author(s):  
Bevelynn Williams ◽  
Martín López-García ◽  
Joseph J. Gillard ◽  
Thomas R. Laws ◽  
Grant Lythe ◽  
...  

We present a stochastic mathematical model of the intracellular infection dynamics of Bacillus anthracis in macrophages. Following inhalation of B. anthracis spores, these are ingested by alveolar phagocytes. Ingested spores then begin to germinate and divide intracellularly. This can lead to the eventual death of the host cell and the extracellular release of bacterial progeny. Some macrophages successfully eliminate the intracellular bacteria and will recover. Here, a stochastic birth-and-death process with catastrophe is proposed, which includes the mechanism of spore germination and maturation of B. anthracis. The resulting model is used to explore the potential for heterogeneity in the spore germination rate, with the consideration of two extreme cases for the rate distribution: continuous Gaussian and discrete Bernoulli. We make use of approximate Bayesian computation to calibrate our model using experimental measurements from in vitro infection of murine peritoneal macrophages with spores of the Sterne 34F2 strain of B. anthracis. The calibrated stochastic model allows us to compute the probability of rupture, mean time to rupture, and rupture size distribution, of a macrophage that has been infected with one spore. We also obtain the mean spore and bacterial loads over time for a population of cells, each assumed to be initially infected with a single spore. Our results support the existence of significant heterogeneity in the germination rate, with a subset of spores expected to germinate much later than the majority. Furthermore, in agreement with experimental evidence, our results suggest that most of the spores taken up by macrophages are likely to be eliminated by the host cell, but a few germinated spores may survive phagocytosis and lead to the death of the infected cell. Finally, we discuss how this stochastic modelling approach, together with dose-response data, allows us to quantify and predict individual infection risk following exposure.


2019 ◽  
Vol 366 (17) ◽  
Author(s):  
Bobo Wang ◽  
Nan Zhang ◽  
Peng-tao Gong ◽  
Jianhua Li ◽  
Ju Yang ◽  
...  

ABSTRACT This study mainly investigated the effects of environmental factors on the germination/dormancy, sporulation and resistance of Duddingtonia flagrans chlamydospores. Results showed that the germination temperature of chlamydospores was >10°C and ≤35°C. After the chlamydospores were treated at −20, −40 and −80°C for 12–24 h, they still had the ability to germinate. The chlamydospores germinated at pH 3–13 but did not germinate at pH 1–2 and pH 14. The chlamydospores could tolerate ultraviolet rays for 720 min, but visible light irradiation for 24 h significantly reduced their germination rate. The chlamydospores did not germinate under anaerobic conditions. After the chlamydospores were cultured on water agar (WA) containing 5, 10 and 20% NaCl, their germination rate was significantly inhibited. Once NaCl was removed, the chlamydospores almost completely recovered their germination ability. Among the nine kinds of additives used in the study, 0.3% arginine significantly promoted spore germination (P < 0.05) but 1% trehalose and 1% glycerine significantly inhibited spore germination during incubation from 24 h to 48 h (P < 0.05). This work indicated that D. flagrans chlamydospores are highly resistant to environmental variations and so could be used for biocontrol of animal parasites.


Sign in / Sign up

Export Citation Format

Share Document