Position Paper: Low-cost Prototyping and Solution Development for Pandemics and Emergencies using Industry 4.0

Author(s):  
Srihari Yamanoor ◽  
Narasimha Yamanoor ◽  
Satyakanth Thyagaraja
Keyword(s):  
Low Cost ◽  
2020 ◽  
Vol 87 (s1) ◽  
pp. s79-s84
Author(s):  
Qummar Zaman ◽  
Senan Alraho ◽  
Andreas König

AbstractThe conventional method for testing the performance of reconfigurable sensory electronics of industry 4.0 relies on the direct measurement methods. This approach gives higher accuracy but at the price of extremely high testing cost and does not utilize the new degrees of freedom for measurement methods enabled by industry 4.0. In order to reduce the test cost and use available resources more efficiently, a primary approach, called indirect measurements or alternative testing has been proposed using a non-intrusive sensor. Its basic principle consists in using the indirect measurements, in order to estimate the sensory electronics performance parameters without measuring directly. The non-intrusive property of the proposed method offers better performance of the sensing electronics and virtually applicable to any sensing electronics. Efficiency is evaluated in terms of model accuracy by using six different classical metrics. It uses an indirect current-feedback instrumentation amplifier (InAmp) as a test vehicle to evaluate the performance parameters of the circuit. The device is implemented using CMOS 0.35 μm technology. The achieved maximum value of average expected error metrics is 0.24, and the lowest value of correlation performance metrics is 0.91, which represent an excellent efficiency of InAmp performance predictor.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Arka Ghosh ◽  
David John Edwards ◽  
M. Reza Hosseini ◽  
Riyadh Al-Ameri ◽  
Jemal Abawajy ◽  
...  

PurposeThis research paper adopts the fundamental tenets of advanced technologies in industry 4.0 to monitor the structural health of concrete beam members using cost-effective non-destructive technologies. In so doing, the work illustrates how a coalescence of low-cost digital technologies can seamlessly integrate to solve practical construction problems.Design/methodology/approachA mixed philosophies epistemological design is adopted to implement the empirical quantitative analysis of “real-time” data collected via sensor-based technologies streamed through a Raspberry Pi and uploaded onto a cloud-based system. Data was analysed using a hybrid approach that combined both vibration-characteristic-based method and linear variable differential transducers (LVDT).FindingsThe research utilises a novel digital research approach for accurately detecting and recording the localisation of structural cracks in concrete beams. This non-destructive low-cost approach was shown to perform with a high degree of accuracy and precision, as verified by the LVDT measurements. This research is testament to the fact that as technological advancements progress at an exponential rate, the cost of implementation continues to reduce to produce higher-accuracy “mass-market” solutions for industry practitioners.Originality/valueAccurate structural health monitoring of concrete structures necessitates expensive equipment, complex signal processing and skilled operator. The concrete industry is in dire need of a simple but reliable technique that can reduce the testing time, cost and complexity of maintenance of structures. This was the first experiment of its kind that seeks to develop an unconventional approach to solve the maintenance problem associated with concrete structures. This study merges industry 4.0 digital technologies with a novel low-cost and automated hybrid analysis for real-time structural health monitoring of concrete beams by fusing several multidisciplinary approaches into one integral technological configuration.


2020 ◽  
Vol 10 (20) ◽  
pp. 7054 ◽  
Author(s):  
Muzaffar Rao ◽  
Liam Lynch ◽  
James Coady ◽  
Daniel Toal ◽  
Thomas Newe

Industry 4.0 uses the analysis of real-time data, artificial intelligence, automation, and the interconnection of components of the production lines to improve manufacturing efficiency and quality. Manufacturing Execution Systems (MESs) and Autonomous Intelligent Vehicles (AIVs) are key elements of Industry 4.0 implementations. An MES connects, monitors, and controls data flows on the factory floor, while automation is achieved by using AIVs. The Robot Operating System (ROS) built AIVs are targeted here. To facilitate MES and AIV interactions, there is a need to integrate the MES and the AIVs to help in building an automated and interconnected manufacturing environment. This integration needs middleware, which understands both MES and AIVs. To address this issue, a LabVIEW-based scheduler is proposed here as the middleware. LabVIEW communicates with the MES through webservices and has support for ROS. The main task of the scheduler is to control the AIV based on MES requests. The scheduler developed was tested in a real factory environment using the SAP MES and a Robotnik ‘RB-1′ robot. The scheduler interface provides real-time information about the current status of the MES, AIV, and the current stage of scheduler processing. The proposed scheduler provides an efficient automated product delivery system that transports the product from process cell to process cell using the AIV, based on the production sequences defined by the MES. In addition, using the proposed scheduler, integration of an MES is possible with any low-cost ROS-built AIV.


Symmetry ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 1486
Author(s):  
Laslo Tarjan ◽  
Ivana Šenk ◽  
Jelena Erić Obućina ◽  
Stevan Stankovski ◽  
Gordana Ostojić

Industry 4.0 is a paradigm that enhances industrial automation systems with the recent advances in the domain of the Internet of Things (IoT), gaining new possibilities and providing new services. Traditional industrial machines do not have IoT capabilities, and in order to integrate such a machine into Industry 4.0, there is a need for an intermediary device or system that communicates with the machine through its supported communication interfaces and protocols and forwards the communication to the global network. This paper presents the development and experimental validation of a low-cost hardware module that can easily integrate the machine’s existing control unit into the IoT and enable synchronization of the measurements and states of the variables of the machine and its environment with a cloud server. The developed module is universal, can connect to any control unit that is able to communicate through basic RS232 serial communication, and does not require the control unit to have any higher level communication protocol implemented. On the other end, the presented solution uses a dedicated smartphone application to provide remote monitoring and control of the machine through the cloud by using the synchronized variable states, as well as further possibilities for storing, processing, and analyzing the historical data from the system. The developed solution was experimentally validated on an experimental setup consisting of a conveyor belt driven by a three-phase asynchronous electromotor controlled by a programmable logic controller through a variable-frequency drive.


Author(s):  
Tarun Kanti Jana

The manufacturing industry is undergoing drastic changes owing to a steep rise in business competition and growing complexities in other business perspectives. The highly turbulent market is characterized by ever-increasing mass customization, wide volume-mix, shorter lead time, and low cost, which along with varieties of internal disturbances have complicated the business stability. The multi-agent-based systems comprising of fundamental entities called agents and characterized by autonomy, cooperation, and self-organizing abilities have already made remarkable breakthrough to deal with the challenges through increased robustness, scalability, and enhanced adaptability through their dynamic capabilities. The decision-making ability of the agents can be augmented if equipped with cognitive abilities like that of human beings. The chapter discusses cyber-physical production system (CPPS) to realize cognitive manufacturing in non-conventional machining environments.


JOURNAL ASRO ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 202
Author(s):  
Firman Yudianto ◽  
Fajar Annas Susanto

Currently a low cost security system is needed and easy to apply especially at educational institutions that willimplement smart school and industry 4.0. Needed devices are raspberry pi and web camera. Raspberry pi willonly save moving images taken from the web camera. Because by storing an image whose file size is not toolarge will ease the performance of the server. In this study, a design for the raspberry pi based motion detectionsystem will be applied at SMK PGRI Sukodadi Lamongan Regency which has not have security system. Thissystem will save the file in the form of an image that will be put together into a moving image that looks like avideo that will displayed in a LED monitor.Keywords: smart school, motion detection, moving image.


2020 ◽  
Vol 10 (23) ◽  
pp. 8566
Author(s):  
Alberto Cotrino ◽  
Miguel A. Sebastián ◽  
Cristina González-Gaya

The Industry 4.0 era has resulted in several opportunities and challenges for the manufacturing industry and for small and medium-sized enterprises (SME); technologies such as the Internet of Things (IoT), Virtual Reality (VR) or Cloud Computing are changing business structures in profound ways. A literature review shows that most large-sized enterprises have rolled out investment plans, some of which are reviewed during this research and show that Industry 4.0 investments in such companies exceed the turnover of SMEs in all cases (<€50 million), which makes access to those technologies by SMEs very difficult. The research has also identified two gaps: firstly, the recent literature review fails to address the implementation of Industry 4.0 technologies in SMEs from a practical viewpoint; secondly, the few existing roadmaps for the implementation of Industry 4.0 lack a focus on SMEs. Furthermore, SMEs do not have the resources to select suitable technologies or create the right strategy, and they do not have the means to be fully supported by consultancies. To this end, a simple six-step roadmap is proposed that includes real implementations of Industry 4.0 in SMEs. Our results show that implementing Industry 4.0 solutions following the proposed roadmap helps SMEs to select appropriate technologies. In addition, the practical examples shown across this work demonstrate that SMEs can access several Industry 4.0 technologies with low-cost investments.


Materials ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1322 ◽  
Author(s):  
Ana Valerga ◽  
Moisés Batista ◽  
Jorge Salguero ◽  
Frank Girot

Additive manufacturing technologies play an important role in Industry 4.0. One of the most prevalent processes is fused deposition modelling (FDM) due to its versatility and low cost. However, there is still a lack of standardization of materials and procedures within this technology. This work aims to study the relationship of certain operating parameters and the conditions of poly(lactic acid) (PLA) polymer with the results of the manufactured parts in dimensional terms, surface quality, and mechanical strength. In this way, the impact of some material characteristics is analyzed, such as the pigmentation of the material and the environmental humidity where it has been stored. The manufacturing parameter that relates to these properties has been the extrusion temperature since it is the most influential in this technology. The results are quite affected especially by humidity, being a parameter little studied in the literature.


Sign in / Sign up

Export Citation Format

Share Document