scholarly journals Energy Efficient Control by the Group of Oil Pumping Stations Operation

Author(s):  
Gennadii Kaniuk ◽  
◽  
Andrii Mezeria ◽  
Victoria Kniazeva ◽  
Tetiana Fursova ◽  
...  

This work is devoted to intensification of the power efficiency of computerized systems of con-trol by the pumping units group of oil pumping stations of the main lines. The criterion of the energy efficiency is a minimum total energy loss. The goal set can be reached by the develop-ment of algorithms of the energy efficient control. The most important scientific result based on the identification of the mathematical models of the objects controlled is the efficient algorithm for controlling the group of oil pumping units. It allows determining in real time the operation modes of separate pumping units, upon which the total energy losses will be minimal. The sig-nificance of the results obtained consists in the energy losses decrease across the main oil pipe-line during the combined control by the pumping units groups. Their practical significance con-sists in decreasing the cost of oil transportation at the expense of decreasing the energy con-sumed by the pumping units. The main stages of plotting the modes maps were presented of the efficient operation of the pumping units based on the definition of the necessary rotation fre-quencies and positions of the regulating valves. Experimentally was performed the analysis of the operation modes of the pumping unit using different methods for productivity regulation, and their comparative energy efficiency was shown. The experimental data extrapolation was carried out, and, on its basis, the possible economic effect was determined brought by the use of the energy-conserving systems of the controlling the group of pumping systems.

Author(s):  
Alexander D. Pisarev

This article studies the implementation of some well-known principles of information work of biological systems in the input unit of the neuroprocessor, including spike coding of information used in models of neural networks of the latest generation.<br> The development of modern neural network IT gives rise to a number of urgent tasks at the junction of several scientific disciplines. One of them is to create a hardware platform&nbsp;— a neuroprocessor for energy-efficient operation of neural networks. Recently, the development of nanotechnology of the main units of the neuroprocessor relies on combined memristor super-large logical and storage matrices. The matrix topology is built on the principle of maximum integration of programmable links between nodes. This article describes a method for implementing biomorphic neural functionality based on programmable links of a highly integrated 3D logic matrix.<br> This paper focuses on the problem of achieving energy efficiency of the hardware used to model neural networks. The main part analyzes the known facts of the principles of information transfer and processing in biological systems from the point of view of their implementation in the input unit of the neuroprocessor. The author deals with the scheme of an electronic neuron implemented based on elements of a 3D logical matrix. A pulsed method of encoding input information is presented, which most realistically reflects the principle of operation of a sensory biological neural system. The model of an electronic neuron for selecting ranges of technological parameters in a real 3D logic matrix scheme is analyzed. The implementation of disjunctively normal forms is shown, using the logic function in the input unit of a neuroprocessor as an example. The results of modeling fragments of electric circuits with memristors of a 3D logical matrix in programming mode are presented.<br> The author concludes that biomorphic pulse coding of standard digital signals allows achieving a high degree of energy efficiency of the logic elements of the neuroprocessor by reducing the number of valve operations. Energy efficiency makes it possible to overcome the thermal limitation of the scalable technology of three-dimensional layout of elements in memristor crossbars.


2021 ◽  
Vol 14 (2) ◽  
pp. 124-131
Author(s):  
K. A. Ignatiev ◽  
E. R. Giniyatullin ◽  
M. G. Ziganshin

Combined air and water heating schemes have been actively used recently for heating public and residential premises. They have certain advantages in countries with a warm climate, whereas in a temperate climate, their use may be unfeasible. The most effective regulation of the heating system in the building can be expected, if all the technology specifics are taken into account, in terms of both the purpose of the room and the methods of regulation. A system focused only on weather-based regulation falls short of meeting to energy-efficient control classes: a heat carrier with the same temperature is distributed among rooms with different requirements for temperature and humidity characteristics. The issues of ensuring the energy efficiency of the combined air and water heating system in public buildings for the temperate continental climate of Russia — the academic building (AB) and laboratory building (LB) of the Kazan State Energy University (KSEU) have been considered. Heating devices of the KSEU heating system have manual control valves installed in the premises, or radiator valves with thermostatic heads, but without room controllers, which does not meet the energy-efficient control classes. An experimental survey of the functioning of the heating system of the KSEU buildings during the 2019 – 2020 and 2020 – 2021 heating seasons was conducted. The optical pyrometry method was used to measure the temperature of the surfaces of windows, walls and elements of the heating system, as well as the temperature and humidity of the air in lecture rooms and corridors of the AB and LB of the KSEU. The parameters of heating devices and indoor air in rooms of various purposes were found compliant with the current sanitary and hygienic requirements. At the same time, the need to switch to a higher class of regulation has been revealed, since, under the current situation, the parameters of the indoor air depend on the outdoor temperature: in the abnormally warm winter of 2020, the indoor air temperature was at the edge of the maximum permissible value, while in the normal climate of winter of 2021, it was at the edge of the minimum permissible value.


2018 ◽  
Vol 170 ◽  
pp. 03017 ◽  
Author(s):  
Alexey Dmitriev ◽  
Vyacheslav Gerasimov

The expediency of using a variable frequency drive for pumping units was repeatedly proved both from the point of view of the economic component and the technological one. However, the construction of automatic control systems for the operating parameters of pumping stations is mainly based on maintaining the pressure setpoint and does not include monitoring the efficiency of the aggregates working in the group and, the more so, its regulation. In this paper, an algorithm is developed for the energy efficient management of centrifugal pump units, which allows not only maintaining the pressure setpoint, but also optimizing their efficiency.


Author(s):  
Valerio De Martinis ◽  
Ambra Toletti ◽  
Francesco Corman ◽  
Ulrich A. Weidmann ◽  
Andrew Nash

The optimization of rail operation for improving energy efficiency plays an important role for the current and future market of rail freight services and helps rail compete with other transport modes. This paper presents a feedforward simulation-based model that performs speed profile optimization together with minor rescheduling actions. The model’s purpose is to provide railway operators and infrastructure managers with energy-efficient solutions that are tailored especially for freight trains. This work starts from the assumption that freight train characteristics are completely defined only a few hours before actual departure; therefore, small specific feedforward adjustments that do not affect the surrounding operation can still be considered. The model was tested in a numerical example. The example clearly shows how the optimized solutions can be evaluated with reference to energy saved and robustness within the rail traffic. The evaluation is based on real data from the North–South corridor crossing Switzerland from Germany to Italy.


Author(s):  
Shuai Su ◽  
Tao Tang ◽  
Xiang Li

Energy-efficient operation of trains in subway systems is regarded as one of the most effective strategies to cut down the operational cost. Most of the studies about the energy-efficient operation of trains aim to minimize the consumption of mechanical energy of trains. In this paper, an energy-efficient train control model is proposed under the practical billing system by introducing the traction efficiency. In addition, a numerical solution approach is presented to solve the energy-efficient driving strategy, which consists of the control sequences and the corresponding switching points. First, the authors analyze the energy-efficient control problem by applying the maximum principle, from which the energy-efficient control regime is proved to include the maximum acceleration, coasting, cruising with partial braking, and maximum braking. Second, the control sequences for one section are fully analyzed and an algorithm is presented to calculate the switching points with the energy consumption constraint. To obtain the solution to an interval with variable speed limits and gradients, the interval is divided into several sections, where the gradient and speed limit of each section are constants. A primary energy-efficient solution, which costs a longer trip time, is given. Then, energy units are assigned into multiple sections to shorten the trip time of the primary solution. Specifically, each energy unit is added into the selected section to achieve the maximum time reduction. Finally, the energy-efficient driving strategy at all sections will be obtained when the scheduled trip time of the interval is delivered. Some examples based on the practical data are conducted to illustrate that the proposed approach has a good potential on saving energy of trains.


2021 ◽  
pp. 27-31
Author(s):  
F.S. Aliyev ◽  
◽  
Е.М. Farhadzade ◽  
Е.F. Aliyev ◽  
◽  
...  

The paper reviews the issues of increasing energy efficiency of support systems for formation pressure (FPS) due to the reducing non-productive power loss. For this purpose, the structure of power consumers in FPS system has been studied and the elements with the most productive power loss revealed, as well as existing methods for pump stations control and their advancement ways analyzed. The research works show that 55–60 % of non-productive power loss in oil production belong to the FPS system, and the great part of it falls within the pump units. Foremost, it is associated with non-efficient control of their operation regimes. Thereby, as the great majority of applied regulation methods is directed only to provide necessary injection capacity, power issue is not taken into account. It not only leads to the increase of power losses within the system, but also disables enhancement of prospects for control on operation regimes of pumping units. It was defined that with the method of regulation of productivity of pumping unit by changing the frequency of shaft rotation, it is possible to achieve the extension of technological options of pump station and minimize non-productive power loss as well.


2016 ◽  
Vol 18 (4) ◽  
Author(s):  
DINOLOV OGNYAN

<p>The aim of this study is to justify a generalized basis model for investigating, evaluating and comparing the energy efficiency of the individual and the grouped mechanical handling machines and systems. Based on a conducted analysis and developed model technological schemes of the systems for continuous transport, dependencies are drawn for determining the basis power and minimizing the potential energy losses in loads passages, the losses of height and potential energy in the systems’ auxiliary elements as well as the total energy losses. Additional indices for basis evaluation of the energy efficiency of the continuous-transport-systems technological schemes, regardless of the systems’ type and scope, are developed and systematized.</p>


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Jaesung Park ◽  
Heejung Byun

Smart interference management methods are required to enhance the throughput, coverage, and energy efficiency of a dense small cell network. In this paper, we propose a transmit power control for energy efficient operation of a dense small cell network. We cast the power control problem as a noncooperative game to satisfy the design requirement that small cells do not need any information exchange among them. We analyze the sufficient condition for the existence of a Nash equilibrium (NE) state of the proposed game. We also analyze that the NE state is unique by transforming the original nonlinear fractional programming problem into a nonlinear parametric programming problem. Through simulation studies, we verify our analysis results. In addition, we show that the proposed method achieves higher energy efficiency of a network and balances the energy efficiency among cells more evenly than the methods based on the AIMD (additive increase and multiplicative decrease) algorithm.


2013 ◽  
Vol 441 ◽  
pp. 941-946
Author(s):  
Ting Song Jiang ◽  
Xi Luan ◽  
Xiao Yan Xu ◽  
Jian Jun Wu

In this paper, the optimization based on energy efficiency in a relay assisted wireless multicast system, where a single source communicates with multiple destinations with the help of an amplify-and-forward relay, is proposed. We assume that the source cannot reach the destinations directly, and thus the relay forwards the signal in two hops. Under the performance objective of maximizing the number of bits that the source sends to all destinations per Joule of the total energy spent, we formulate the optimization problem based on high SNR approximation, and prove that the problem can be extended to a standard Geometric Programming (GP) problem, which is a well-studied class of nonlinear and nonconvex optimization and has regular solutions. Finally, we provide a set of numerical results to illustrate energy efficiency corresponding to different channel conditions.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 286
Author(s):  
Ryszard Zwierzchowski ◽  
Olgierd Niemyjski ◽  
Marcin Wołowicz

The paper presents an analytical discussion of how to improve the energy efficiency of the steam cushion system operation for a Thermal Energy Storage (TES) tank. The EU’s green deal 2050 target policy requires an increase in the energy efficiency of energy production and use, as well as an increase in the share of renewable energy in the overall energy production balance. The use of energy-efficient TES is considered as one of the most important technologies to achieve the objectives of this EU policy. The analyses presented in the paper of energy-efficient operation of steam cushion (SC) systems were carried out by using operational data received from three District Heating Systems (DHSs) that supply heat and electricity to one of the largest cities in Poland and are equipped with the TES systems. These three analyzed TESs differ in capacities from 12,800 to 30,400 m3, tank diameters from 21 to 30 m and shell height from 37 to 48.2 m. The main purpose of using a steam cushion system in the TES tank is to protect the water stored in it against the absorption of oxygen from the surrounding atmospheric air through the surge chamber and safety valves located on the roof of the tank. The technical solutions presented here for the upper orifice for charging and discharging hot water into/from the tank and the suction pipe for circulating water allow to us achieve significant energy savings in the steam cushion systems. Both the upper orifice and the end of suction pipe are movable through the use of pontoons. Thanks to the use of this technical solution, a stable insulating water layer is created above the upper orifice in the upper part of the TES tank, where convective and turbulent transport of heat from the steam cushion space to the hot water stored in the tank is significantly limited. Ultimately, this reduces the heat flux by approximately 90% when compared to the classic technical solutions of steam cushion systems in TES tanks, i.e., for the upper orifice and circulation water pipe. The simplified analysis presented in the paper and comparison of its results with experimental data for heat flow from the steam cushion space to hot water stored in the upper part of the TES tank fully confirms the usefulness of the heat-flow models used.


Sign in / Sign up

Export Citation Format

Share Document