Isothermal and Nonisothermal Creep of Lightly Crosslinked cis-1,4-Polybutadiene

1977 ◽  
Vol 50 (5) ◽  
pp. 884-894
Author(s):  
J. M. Caruthers ◽  
R. E. Cohen

Abstract A nonisothermal creep experiment has been analyzed to ascertain its suitability for determining the temperature dependence of low-activation-energy viscoelastic processes in elastomers far above Tg. The nonisothermal method was employed to determine the activation energy for creep near 35°C in a lightly crosslinkedcis-1,4-polybutadiene elastomer at small strains within the linear viscoelastic region and at various large deformations up to rupture. The observed activation energy was essentially independent of the level of strain, and the value of ΔHa (∼ 11 kcal/mol) determined via the nonisothermal creep method was in good agreement with the result (∼12 kcal/mol) obtained via time-temperature superposition of isothermal linear viscoelastic creep data. The nonisothermal data allowed for an estimate of the volume of the “flow unit” associated with the controlling viscoelastic creep mechanism, attributed here to slippage of entanglements within lightly crosslinked network.

2007 ◽  
Vol 129 (3) ◽  
pp. 461-466 ◽  
Author(s):  
Osama M. Abuzeid ◽  
Peter Eberhard

The objective of this study is to construct a continuous mathematical model that describes the frictionless contact between a nominally flat (rough) viscoelastic punch and a perfectly rigid foundation. The material’s behavior is modeled by assuming a complex viscoelastic constitutive law, the standard linear solid (SLS) law. The model aims at studying the normal compliance (approach) of the punch surface, which will be assumed to be quasistatic, as a function of the applied creep load. The roughness of the punch surface is assumed to be fractal in nature. The Cantor set theory is utilized to model the roughness of the punch surface. An asymptotic power law is obtained, which associates the creep force applied and the approach of the fractal punch surface. This law is only valid if the approach is of the size of the surface roughness. The proposed model admits an analytical solution for the case when the deformation is linear viscoelastic. The modified analytical model shows a good agreement with experimental results available in the literature.


2008 ◽  
Vol 36 (3) ◽  
pp. 211-226 ◽  
Author(s):  
F. Liu ◽  
M. P. F. Sutcliffe ◽  
W. R. Graham

Abstract In an effort to understand the dynamic hub forces on road vehicles, an advanced free-rolling tire-model is being developed in which the tread blocks and tire belt are modeled separately. This paper presents the interim results for the tread block modeling. The finite element code ABAQUS/Explicit is used to predict the contact forces on the tread blocks based on a linear viscoelastic material model. Special attention is paid to investigating the forces on the tread blocks during the impact and release motions. A pressure and slip-rate-dependent frictional law is applied in the analysis. A simplified numerical model is also proposed where the tread blocks are discretized into linear viscoelastic spring elements. The results from both models are validated via experiments in a high-speed rolling test rig and found to be in good agreement.


1960 ◽  
Vol 33 (2) ◽  
pp. 335-341
Author(s):  
Walter Scheele ◽  
Karl-Heinz Hillmer

Abstract As a complement to earlier investigations, and in order to examine more closely the connection between the chemical kinetics and the changes with vulcanization time of the physical properties in the case of vulcanization reactions, we used thiuram vulcanizations as an example, and concerned ourselves with the dependence of stress values (moduli) at different degrees of elongation and different vulcanization temperatures. We found: 1. Stress values attain a limiting value, dependent on the degree of elongation, but independent of the vulcanization temperature at constant elongation. 2. The rise in stress values with the vulcanization time is characterized by an initial delay, which, however, is practically nonexistent at higher temperatures. 3. The kinetics of the increase in stress values with vulcanization time are both qualitatively and quantitatively in accord with the dependence of the reciprocal equilibrium swelling on the vulcanization time; both processes, after a retardation, go according to the first order law and at the same rate. 4. From the temperature dependence of the rate constants of reciprocal equilibrium swelling, as well as of the increase in stress, an activation energy of 22 kcal/mole can be calculated, in good agreement with the activation energy of dithiocarbamate formation in thiuram vulcanizations.


2008 ◽  
Vol 19 (2) ◽  
pp. 127 ◽  
Author(s):  
S.B. BAKAL ◽  
K.H. GEDAM ◽  
G.P. SHARMA

In developed countries, more than 50% potatoes are consumed as processed products. As drying is the vital phenomenon in processing, it is necessary to investigate the drying characteristics and its kinetics. In this experimental study, drying kinetics of Potato in two different shape of cuboidal & cylindrical with three aspect ratio was investigated as a function of drying conditions. Experiments were conducted using air temperatures of 50, 60 and 70 ºC, at velocity of 7 ms-1. The experimental moisture data were fitted to Page and simple models available in the literature, and a good agreement was observed. The Page model gave better fit than simple model. In the ranges covered, the values of the effective moisture diffusivity, Deff were obtained between 2.278 × 10-9 to 3.314 × 10-8 m2s-1 from the Fick's diffusion model. Using Deff, the value of activation energy (Ea) was determined assuming the Arrhenius-type temperature relationship.


1976 ◽  
Vol 64 (1) ◽  
pp. 119-130
Author(s):  
M. V. Thomas

About 90% of the butanol uptake by the cockroach abdominal nerve cord washed out with half-times of a few seconds, in good agreement with an electrophysiological estimate, and the temperature sensitivity suggested an activation energy of 3 Kcal mole-1. The remaining activity washed out far more slowly, with a similar time course to that observed in a previous investigation which had not detected the fast fraction. Its size was similar to the non-volatile uptake, and was considerably affected by the butanol concentration and incubation period. It apparently consisted of butanol metabolites, which could be detected by chromatography.


1978 ◽  
Vol 45 (4) ◽  
pp. 773-779 ◽  
Author(s):  
R. Mark ◽  
W. N. Findley

It is shown that a creep surface, defined in terms of a prescribed creep rate, can be determined from the multiple integral formulation representing the creep data. The creep surface for 304 stainless steel was found to be in good agreement with a Mises ellipse. Observed creep rate vectors for this alloy were found to be normal to a Mises ellipse. These results were obtained from creep tests performed on 304 stainless steel under combined tension and torsion at 593°C (1100°F). Creep strains observed for at least 100 hr were adequately represented by a power function of time, the exponent of which was independent of stress. A third-order multiple integral representation together with a limiting stress below which creep does not occur was employed to describe satisfactorily the constant stress creep data.


2013 ◽  
Vol 712-715 ◽  
pp. 34-37
Author(s):  
Fang Zhang

A modified model describing the austenite reaction was developed that took into account the effect of heating rate. The model considered the variation of activation energy during non-isothermal heating and one set of model parameter was adequate to predict the formation of austenite. To verify the theoretical model, the process of austenite formation during continuous heating in Cr5 roller steel with pearlite and ferrite mixed initial microstructure was analyzed by dilatation experiment. The results show that a strong logarithmic relationship between apparent activation energy and heating rate. Experimental kinetic transformations as well as critical temperatures of austenite reaction are in good agreement with the calculations. The model can be used to describe the transformation kinetics at an intermediate heating rate.


Sign in / Sign up

Export Citation Format

Share Document