Tire Wear at Controlled Slip

1962 ◽  
Vol 35 (5) ◽  
pp. 1342-1359 ◽  
Author(s):  
K. A. Grosch ◽  
A. Schallamach

Abstract Tire wear at controlled slip, as realized by setting the wheels of a trailer at a slip angle, obeys the theoretically predicted square law dependence on the slip angle if allowance is made for the effect of temperature and abrasion patterns on the abrasion resistance of the tread compound. The temperature of the tire surface and the intensity of the abrasion patterns increase with increasing slip angle; the severity dependence of the relative wear rating of any two types of tire is largely due to differences in temperature and abrasion pattern coefficients. This applies also to wear on wet roads. The order of magnitude of the absolute wear rates agrees well with the values calculated from the abrasion resistance of tread compounds and the mechanical properties of the tire.

Author(s):  
S. Bec ◽  
K. Demmou ◽  
J.-L. Loubet

This study aims to contribute to better understand the antiwear action of zinc dialkyldithiophosphate (ZDTP) additives used in car engine lubrication. The antiwear action of ZDTP is associated to the formation of a protective tribofilm onto the rubbing surface. On a mechanical point of view, the efficiency of ZDTP tribofilms results from equilibrium between film formation and wear rates, associated with appropriate rheological properties. In this work, the mechanical properties of a ZDTP tribofilm have been measured by nanoindentation in different test conditions in order to investigate the effect of temperature and strain rate. A Nanoindenter XP® entirely set into a climatic chamber was used to perform the nanoindentation tests. For all tests, an increase of the elastic modulus was observed from a threshold contact pressure value. This effect is similar to the anvil effect observed on polymers: in confined geometry, the elastic modulus increases versus hydrostatic pressure. For the tribofilm, in the studied range, this effect is enhanced at high temperature and low strain rate. Furthermore, when the temperature increases, a change in the rheological behavior of the tribofilm is observed. Up to about 50°C, the tribofilm exhibits viscoplastic behavior — the hardness increases versus strain rate — and above 50°C, the hardness decreases versus strain rate (“shear thinning-like” behavior).


1971 ◽  
Vol 44 (5) ◽  
pp. 1159-1172 ◽  
Author(s):  
R. W. Lowne

Abstract (1) This experimental work has shown that there is a large variation in the degree of tire wear on different surfaces, the wear on the rough, harsh surface being approximately three times as severe as that on the rough polished surface. (2) Measurement of weight loss by the method described provides a sensitive measurement of tire wear. (3) Qualitative analysis has shown that it is the harshness of the surface which is of major importance in tire wear, with surface roughness as a slightly modifying factor. (4) Quantitative analysis of various parameters indicating surface characteristics has shown that the shape of the asperity tips and the low-speed, wet coefficient of friction are major factors. These can be used to predict wear to a high degree of significance within the range of values covered by these measurements, although a large sample of surfaces would be desirable to check this relationship further. (5) A decrease in the severity of wear of six times involving a drop in speed from 50 km/h to 25 km/h has not altered the relative wear ratings of the three surfaces which have been compared and it seems reasonable to assume that the relative wear rates, although not the absolute values, would be the same in normal conditions of use. Consequently, the increased use of rough road surfaces is not expected materially to affect tire wear. (6) Significant increase in tire life from a wear standpoint can be expected from the use of radial ply tires instead of cross ply tires.


2020 ◽  
pp. 313-317
Author(s):  
A.I. Kovtunov ◽  
Yu.Yu. Khokhlov ◽  
S.V. Myamin

Titanium—aluminum, titanium—foam aluminum composites and bimetals obtained by liquid-phase methods, are increasingly used in industry. At the liquid-phase methods as result of the reaction diffusion of titanium and aluminum is formed transitional intermetallic layer at the phase boundary of the composite, which reduces the mechanical properties of titanium and composite. To reduce the growth rate of the intermetallic layer between the layers of the composite and increase its mechanical properties, it is proposed to alloy aluminum melt with nickel. The studies of the interaction of titanium and molten aluminum alloyed with nickel made it possible to establish the effect of temperature and aluminizing time on the thickness, chemical and phase compositions of the transition intermetallic layer. The tests showed the effect of the temperature of the aluminum melt, the nickel concentration on the strength properties of titanium—aluminum bimetal.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 535
Author(s):  
Alexander Mironov ◽  
Iosif Gershman ◽  
Eugeniy Gershman ◽  
Pavel Podrabinnik ◽  
Ekaterina Kuznetsova ◽  
...  

Potential relations of tribological characteristics of aluminum antifriction alloys with their compositions and mechanical properties were investigated. In this regard, the properties of eight aluminum alloys containing tin from 5.4% to 11% doped with lead, copper, silicon, zinc, magnesium, and titanium were studied. Mechanical properties such as hardness, strength, relative extension, and impact strength were analyzed. Within the tribological tests seizure load and wear of material were evaluated and secondary structures were studied afterwards. The absence of a definitive correlation between tribological behavior and mechanical properties was shown. It was determined that doping tin over 6% is excessive. The seizure load of the alloys increases with the magnesium content. Secondary structures of the alloys with higher wear rates contain one order less magnesium and tin.


2014 ◽  
Author(s):  
Hesam Taheri ◽  
João Miguel Nóbrega ◽  
Pieter Samyn ◽  
José Antonio Covas

2014 ◽  
Vol 59 (1) ◽  
pp. 121-126
Author(s):  
M. Zygmunt-Kiper ◽  
L. Blaz ◽  
M. Sugamata

Abstract Mechanical alloying of high-purity aluminum and 10 wt.% NiO powders combined with powder vacuum compression and following hot extrusion method was used to produce an Al-NiO composite. Mechanical properties of as-extruded materials as well as the samples annealed at 823 K /6 h, were tested by compression at 293 K - 770 K. High mechanical properties of the material were attributed to the highly refined structure of the samples. It was found that the structure morphology was practically not changed during hot-compression tests. Therefore, the effect of deformation temperature on the hardness of as-deformed samples was very limited. The annealing of samples at 823 K/6 h induced a chemical reaction between NiO-particles and surrounding aluminum matrix. As a result, the development of very fine aluminum oxide and Al3Ni grains was observed.


2006 ◽  
Vol 514-516 ◽  
pp. 687-691 ◽  
Author(s):  
Manuel Evaristo ◽  
Ana Nossa ◽  
Albano Cavaleiro

In this work, W-S-Ti films were deposited by r.f. magnetron sputtering, using simultaneously WS2 and Ti targets. The atomic percentage of Ti in the coating was varied from 0 at.% up to 28 at.%. No significant variations in the S/W ratio with the increase of Ti content were observed. The increasing Ti contents in the films led to a gradual loss of crystallinity. Coatings with contents greater than ≈ 16 at.% only presents a broad peak characteristic of amorphous structures. Alloying the films with Ti led to significant improvements in the hardness (from 0.3 to 8.9 GPa). Also, the adhesive critical load continuously grew with the increase of the Ti content in the films. The wear coefficient of the films dropped more than one order of magnitude with the increase of Ti content whereas the friction coefficient was kept fairly constant with just a small increase in relation to single W-S film. In conclusion, to have a good tribological performance, the addition of Ti to the films should be balanced in order that the increase of the mechanical properties does not lead to severe loss of the self-lubricant properties.


2009 ◽  
Vol 96 (3) ◽  
pp. 641a
Author(s):  
Isaac T.S. Li ◽  
Gilbert C. Walker

Sign in / Sign up

Export Citation Format

Share Document