scholarly journals The effect of temperature and drawing ratio on the mechanical properties of polypropylene monofilaments

2014 ◽  
Author(s):  
Hesam Taheri ◽  
João Miguel Nóbrega ◽  
Pieter Samyn ◽  
José Antonio Covas
2020 ◽  
pp. 313-317
Author(s):  
A.I. Kovtunov ◽  
Yu.Yu. Khokhlov ◽  
S.V. Myamin

Titanium—aluminum, titanium—foam aluminum composites and bimetals obtained by liquid-phase methods, are increasingly used in industry. At the liquid-phase methods as result of the reaction diffusion of titanium and aluminum is formed transitional intermetallic layer at the phase boundary of the composite, which reduces the mechanical properties of titanium and composite. To reduce the growth rate of the intermetallic layer between the layers of the composite and increase its mechanical properties, it is proposed to alloy aluminum melt with nickel. The studies of the interaction of titanium and molten aluminum alloyed with nickel made it possible to establish the effect of temperature and aluminizing time on the thickness, chemical and phase compositions of the transition intermetallic layer. The tests showed the effect of the temperature of the aluminum melt, the nickel concentration on the strength properties of titanium—aluminum bimetal.


2014 ◽  
Vol 59 (1) ◽  
pp. 121-126
Author(s):  
M. Zygmunt-Kiper ◽  
L. Blaz ◽  
M. Sugamata

Abstract Mechanical alloying of high-purity aluminum and 10 wt.% NiO powders combined with powder vacuum compression and following hot extrusion method was used to produce an Al-NiO composite. Mechanical properties of as-extruded materials as well as the samples annealed at 823 K /6 h, were tested by compression at 293 K - 770 K. High mechanical properties of the material were attributed to the highly refined structure of the samples. It was found that the structure morphology was practically not changed during hot-compression tests. Therefore, the effect of deformation temperature on the hardness of as-deformed samples was very limited. The annealing of samples at 823 K/6 h induced a chemical reaction between NiO-particles and surrounding aluminum matrix. As a result, the development of very fine aluminum oxide and Al3Ni grains was observed.


2009 ◽  
Vol 96 (3) ◽  
pp. 641a
Author(s):  
Isaac T.S. Li ◽  
Gilbert C. Walker

Author(s):  
Prasant Vijayaraghavan ◽  
Vishnu-Baba Sundaresan

Ionomers are a class of polymers which contain a small fraction of charged groups in the polymer backbone. These ionic groups aggregate (termed ionic aggregates) to form temporary cross-links that break apart over the ionic dissociation temperature and re-aggregate on cooling, influencing the mechanical properties of these polymers. In addition to enhanced mechanical properties, some ionomers also exhibit self-healing behavior. The self-healing behavior is a consequence of weakly bonded ionic aggregates breaking apart and re-aggregating after puncture or a ballistic impact. The structure and properties of ionomers have been studied over the last several decades; however, there is a lack of understanding of the influence of an electrostatic field on ionic aggregate morphology. Characterizing the effect of temperature and electric field on the formation and structure of these ionic aggregates will lead to preparation of ionomers with enhanced structural properties. This work focuses on Surlyn 8940 which a poly-ethylene methacryclic acid co-polymer in which a fraction of the carboxylic acid is terminated by sodium. In this work, Surlyn is thermoelectrically processed over its ionic dissociation temperature in the presence of a strong electrostatic field. Thermal studies are performed on the ionomer to study the effect of the thermoelectric processing. It is shown that the application of a thermoelectric field leads to increase in the ionic aggregate order in these materials and reduction in crystal size distribution. Thermal Analysis is performed using a Differential Scanning Calorimeter and the resulting thermogram analysis shows that thermoelectric processing increases the peak temperature and onset temperature of melting by 4 C and 20 C respectively. The peak width at half maximum of the melting endotherm is reduced by 10 C due to thermoelectric processing. This serves as a measure of the increased crystallinity. A parametric study on the effect of field duration and field strength is also performed.


Author(s):  
Steven L. Dedmon ◽  
Takashi Fujimura ◽  
Daniel Stone

Plastic deformations alter the mechanical properties of many metals and alloys. Class C and Class D wheel steels such as are used in North American freight car service are particularly affected by plastic deformations occurring during rolling contact between the wheel tread and rail head. This investigation determines the effect plastic deformations have on the mechanical properties of Class C and D wheel steels and how those changes could relate to shakedown theory. The effect of temperature is also discussed.


Metals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 423
Author(s):  
Thorsten Michler ◽  
Frank Schweizer ◽  
Ken Wackermann

It is well-documented experimentally that the influence of hydrogen on the mechanical properties of structural alloys like austenitic stainless steels, nickel superalloys, and carbon steels strongly depends on temperature. A typical curve plotting any hydrogen-affected mechanical property as a function of temperature gives a temperature THE,max, where the degradation of this mechanical property reaches a maximum. Above and below this temperature, the degradation is less. Unfortunately, the underlying physico-mechanical mechanisms are not currently understood to the level of detail required to explain such temperature effects. Though this temperature effect is important to understand in the context of engineering applications, studies to explain or even predict the effect of temperature upon the mechanical properties of structural alloys could not be identified. The available experimental data are scattered significantly, and clear trends as a function of chemistry or microstructure are difficult to see. Reported values for THE,max are in the range of about 200–340 K, which covers the typical temperature range for the design of structural components of about 230–310 K (from −40 to +40 °C). That is, the value of THE,max itself, as well as the slope of the gradient, might affect the materials selection for a dedicated application. Given the current lack of scientific understanding, a statistical approach appears to be a suitable way to account for the temperature effect in engineering applications. This study reviews the effect of temperature upon hydrogen effects in structural alloys and proposes recommendations for test temperatures for gaseous hydrogen applications.


2021 ◽  
Vol 891 ◽  
pp. 150-163
Author(s):  
Jorge Mauricio Fuentes ◽  
Omar Flor Unda ◽  
Santiago Ferrandiz ◽  
Franyelit Suarez

In this article presents evidence about performance of mechanical properties of polycarbonate and nylon materials, which are used in the additive manufacturing by deposition of molten material and that have been subjected to sterilization processes by moist heat at 121°C and dry heat at 140°C. This study provides useful information to consider the use of these materials in sanitary and sterile settings. Mechanical tests of tensile, flex, hardness, Izod impact, thermal tests in Differential Scanning Calorimetry DSC, Thermomechanical analysis TMA and Scanning Electron Microscopy SEM were performed. It is concluded that the mechanical and thermal properties have not been altered through the effect of temperature in sterilization processes.


Sign in / Sign up

Export Citation Format

Share Document