Effect of nickel on formation of transition layer during liquid-phase aluminizing of titanium

2020 ◽  
pp. 313-317
Author(s):  
A.I. Kovtunov ◽  
Yu.Yu. Khokhlov ◽  
S.V. Myamin

Titanium—aluminum, titanium—foam aluminum composites and bimetals obtained by liquid-phase methods, are increasingly used in industry. At the liquid-phase methods as result of the reaction diffusion of titanium and aluminum is formed transitional intermetallic layer at the phase boundary of the composite, which reduces the mechanical properties of titanium and composite. To reduce the growth rate of the intermetallic layer between the layers of the composite and increase its mechanical properties, it is proposed to alloy aluminum melt with nickel. The studies of the interaction of titanium and molten aluminum alloyed with nickel made it possible to establish the effect of temperature and aluminizing time on the thickness, chemical and phase compositions of the transition intermetallic layer. The tests showed the effect of the temperature of the aluminum melt, the nickel concentration on the strength properties of titanium—aluminum bimetal.

2021 ◽  
Vol 13 (15) ◽  
pp. 8164
Author(s):  
Brian E. Bautista ◽  
Lessandro E. O. Garciano ◽  
Luis F. Lopez

There are limited published studies related to the mechanical properties of bamboo species in the Philippines. In this study, the shear strength properties of some economically viable bamboo species in the Philippines were properly characterized based on 220 shear test results. The rationales of selecting this mechanical property are the following: (1) Shear strength, parallel to the fiber, has the highest variability among the mechanical properties; and (2) Shear is one of the governing forces on joint connections, and such connections are the points of failure on bamboo structures when subjected to extreme loading conditions. ISO 22157-1 (2017) test protocol for shear was used for all tests. The results showed that Bambusa blumeana has the highest average shear strength, followed by Gigantochloa apus, Dendrocalamus asper, Bambusa philippinensis, and Bambusa vulgaris. However, comparative analysis, using One-way ANOVA, showed that shear strength values among these bamboo species have significant differences statistically. A linear regression model is also established to estimate the shear strength of bamboo from the physical properties. Characteristic shear strength is also determined using ISO 12122-1 (2014) for future design reference.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3560
Author(s):  
Tomasz Skrzekut ◽  
Grzegorz Boczkal ◽  
Adam Zwoliński ◽  
Piotr Noga ◽  
Lucyna Jaworska ◽  
...  

Zr-2.5Cu and Zr-10Cu powder mixtures were consolidated in the extrusion process and using the spark plasma sintering technique. In these studies, material tests were carried out in the fields of phase composition, microstructure, hardness and tensile strength for Zr-Cu materials at room temperature (RT) and 400 °C. Fractography analysis of materials at room temperature and 400 °C was carried out. The research took into account the anisotropy of the materials obtained in the extrusion process. For the nonequilibrium SPS process, ZrCu2 and Cu10Zr7 intermetallic compounds formed in the material at sintering temperature. Extruded materials were composed mainly of α-Zr and ZrCu2. The presence of intermetallic compounds affected the reduction in the strength properties of the tested materials. The highest strength value of 205 MPa was obtained for the extruded Zr-2.5Cu, for which the samples were cut in the direction of extrusion. For materials with 10 wt.% copper, more participation of the intermetallic phase was formed, which lowered the mechanical properties of the obtained materials. In addition to brittle intermetallic phases, the materials were characterized by residual porosity, which also reduced the strength properties.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1988
Author(s):  
Tibor Kvackaj ◽  
Jana Bidulská ◽  
Róbert Bidulský

This review paper concerns the development of the chemical compositions and controlled processes of rolling and cooling steels to increase their mechanical properties and reduce weight and production costs. The paper analyzes the basic differences among high-strength steel (HSS), advanced high-strength steel (AHSS) and ultra-high-strength steel (UHSS) depending on differences in their final microstructural components, chemical composition, alloying elements and strengthening contributions to determine strength and mechanical properties. HSS is characterized by a final single-phase structure with reduced perlite content, while AHSS has a final structure of two-phase to multiphase. UHSS is characterized by a single-phase or multiphase structure. The yield strength of the steels have the following value intervals: HSS, 180–550 MPa; AHSS, 260–900 MPa; UHSS, 600–960 MPa. In addition to strength properties, the ductility of these steel grades is also an important parameter. AHSS steel has the best ductility, followed by HSS and UHSS. Within the HSS steel group, high-strength low-alloy (HSLA) steel represents a special subgroup characterized by the use of microalloying elements for special strength and plastic properties. An important parameter determining the strength properties of these steels is the grain-size diameter of the final structure, which depends on the processing conditions of the previous austenitic structure. The influence of reheating temperatures (TReh) and the holding time at the reheating temperature (tReh) of C–Mn–Nb–V HSLA steel was investigated in detail. Mathematical equations describing changes in the diameter of austenite grain size (dγ), depending on reheating temperature and holding time, were derived by the authors. The coordinates of the point where normal grain growth turned abnormal was determined. These coordinates for testing steel are the reheating conditions TReh = 1060 °C, tReh = 1800 s at the diameter of austenite grain size dγ = 100 μm.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 548 ◽  
Author(s):  
Leonid Agureev ◽  
Valeriy Kostikov ◽  
Zhanna Eremeeva ◽  
Svetlana Savushkina ◽  
Boris Ivanov ◽  
...  

The article presents the study of alumina nanoparticles’ (nanofibers) concentration effect on the strength properties of pure nickel. The samples were obtained by spark plasma sintering of previously mechanically activated metal powders. The dependence of the grain size and the relative density of compacts on the number of nanofibers was investigated. It was found that with an increase in the concentration of nanofibers, the average size of the matrix particles decreased. The effects of the nanoparticle concentration (0.01–0.1 wt.%) on the elastic modulus and tensile strength were determined for materials at 25 °C, 400 °C, and 750 °C. It was shown that with an increase in the concentration of nanofibers, a 10–40% increase in the elastic modulus and ultimate tensile strength occurred. A comparison of the mechanical properties of nickel in a wide range of temperatures, obtained in this work with materials made by various technologies, is carried out. A description of nanofibers’ mechanisms of influence on the structure and mechanical properties of nickel is given. The possible impact of impurity phases on the properties of nickel is estimated. The tendency of changes in the mechanical properties of nickel, depending on the concentration of nanofibers, is shown.


Sign in / Sign up

Export Citation Format

Share Document