Vulcanization of Rubber in the Presence of N,N-Diethyl-2-Benzothiazolylsulfenamide as Accelerator

1960 ◽  
Vol 33 (2) ◽  
pp. 361-372 ◽  
Author(s):  
B. A. Dogadkin ◽  
O. N. Beliatskaya ◽  
A. B. Dobromyslova ◽  
M. S. Feldshtein

Abstract 1. The vulcanization of rubber in the presence of N,N-diethyl-2-benzothiazolylsulfenamide is characterized by an S-shaped curve for the addition of sulfur with an initial induction period in the reaction. The modulus and number of crosslinks are changed in an analogous manner to the structure of the vulcanizate. 2. The energy of activation of the addition of sulfur in the initial period is equal to 30 kcal per mole as against 14 kcal per mole in the main period. 3. The induction period is increased if the sodium-butadiene rubber is purified from alkali. 4. Molecular oxygen present in the compound being vulcanized decreases the induction period and increases the rate of the addition of the sulfur in the main period. An induction period is not observed when vulcanization is carried out in an atmosphere of pure oxygen. 5. The interaction of N,N-diethyl-2-benzothiazolylsulfenamide with rubber (in the absence of sulfur) at vulcanization temperatures is accompanied by the formation of MBT, diethylamine, and the addition of the elements of the accelerator to the rubber. The kinetics of this process were studied. 6. The interaction of N,N-diethyl-2-benzothiazolyl sulfenamide with rubber leads to the formation of chemical crosslinks between the molecules of rubber (the effect of vulcanization). 7. The change of N,N-diethyl-2-benzothiazolyl sulfenamide under the conditions of normal sulfur vulcanization has the same character as in the interaction of it with rubber. The kinetics of the formation of MBT have a maximum which coincides with the maximum rate of the addition of sulfur to the rubber. 8. A mechanism is presented for the vulcanization and acceleration actions of N,N-diethyl-2-benzothiazolyl sulfenamide which provides for the extraction of hydrogen by the accelerator radicals from the molecular chains of the rubber with the formation of MBT, diethylamine and polymer radicals which are able to interact with the sulfur.

1962 ◽  
Vol 15 (2) ◽  
pp. 181 ◽  
Author(s):  
JJ Batten

The rate of dissolution of silver gauze in nitric acid at various concentrations and temperatures was measured in a static system. The solution process was measured by the weight of silver dissolved in various time intervals. In general, induction periods were observed, but after this period the dissolution proceeded with an appreciable velocity. To examine the influence of acid concentration and temperature on the kinetics of the reaction, the duration of the induction period, the rate of dissolution during this period, and the subsequent maximum rate were taken as kinetic parameters of the reaction. The induction rate was found to be highly dependent on the initial acid concentration (approx. seventh power), whereas over most of the concentration range accessible to study, the maximum rate was proportional to the square of the concentration. It was also observed that increase in temperature sharply increases the induction rate, but has little effect upon the subsequent maximum rate over most of the temperature range studied. The activation energy of the induction rate was greater than 20 kcal/mole, whereas that of the maximum rate was about 4 kcal/mole over most of the temperature range studied. This difference in the activation energy during and after the induction period is explained by a shift in the mechanism controlling the rate of the process from a chemical reaction at the surface to a diffusion process.


1984 ◽  
Vol 52 (01) ◽  
pp. 015-018 ◽  
Author(s):  
A Girolami ◽  
A Sticchi ◽  
R Melizzi ◽  
L Saggin ◽  
G Ruzza

SummaryLaser nephelometry is a technique which allows the evaluation of the concentration of several serum proteins and clotting factors. By means of this technique it is also possible to study the kinetics of the reaction between antigen and antibody. We studied the kinetics of the reaction between prothrombin and an antiprothrombin antiserum using several prothrombins namely: Prothrombin Padua, prothrombin Molise, which are two congenital dysprothrombinemias, cirrhotic, coumarin or normal prothrombins. Different behaviors in the kinetics of the reactions were shown even when the concentration of prothrombins was about the same in all plasma tested. These differences were analyzed by means of a computer (Apple II 48 RAM) programmed to solve four unknown equations (Rodbard’s equation). From the data so obtained one can see that when voltages at the beginning and at the end of the reaction are in all cases about the same, a clear difference in the time required to reach half the maximum value of the voltage can still be demonstrated. This parameter, which is expressed in minutes, is longer in coumarin and prothrombin Molise than in controls. On the contrary it is shorter in prothrombin Padua and has about the same value of controls in the cirrhotic patient. Moreover the time at which the maximum rate is obtained is longer in coumarin and prothrombin Molise than in controls and shorter in liver cirrhosis and prothrombin Padua. In conclusion data obtained show that coumarin prothrombin behaves in a different way from cirrhotic prothrombin and also that there is a different behaviour between the two congenital dysprothrombinemias.


1980 ◽  
Vol 45 (9) ◽  
pp. 2391-2399 ◽  
Author(s):  
Miroslav Kašpar ◽  
Jiří Trekoval

The polymerization kinetics of isoprene (2-methyl-1,3-butadiene) in benzene with butyllithium as the initiator was investigated by the gas chromatographic method. After completion of the initial period of the reaction, its order with respect to the initial concentration of initiator is negative at the concentrations of the latter between 0.01 and 0.25 mol/l, and positive at higher concentrations. A reaction scheme has been suggested with respect to the "cross" association of butyllithium and of the "living" oligoisoprene.


1980 ◽  
Vol 45 (12) ◽  
pp. 3338-3346
Author(s):  
Miroslav Kašpar ◽  
Jiří Trekoval

The effect of small additions of 1-octene, butyl ethyl ether and triethylamine on the polymerization kinetics of isoprene (2-methyl-1,3-butadiene) in benzene initiated with butyllithium was investigated by employing the GLC analysis. The addition of 1-octane was reflected only in a shorter induction period of the reaction; the effect on the propagation rate was insignificant. With the increasing amount of butyl ethyl ether, the polymerization rate increases linearly, while the reaction order with respect to the concentration of triethylamine is variable and increases from 0.33 to 0.66 with the increasing concentration of the initiator. For a constant concentration of triethylamine, the reaction order with respect to the initial concentration of the initiator was found to vary considerably, reaching even negative values. A reaction scheme was suggested, taking into account the competition between two different solvates of alkyllithium.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2872
Author(s):  
Seyed Mohamad Reza Paran ◽  
Ghasem Naderi ◽  
Elnaz Movahedifar ◽  
Maryam Jouyandeh ◽  
Krzysztof Formela ◽  
...  

The effect of several concentrations of carboxylated nitrile butadiene rubber (XNBR) functionalized halloysite nanotubes (XHNTs) on the vulcanization and degradation kinetics of XNBR/epoxy compounds were evaluated using experimental and theoretical methods. The isothermal vulcanization kinetics were studied at various temperatures by rheometry and differential scanning calorimetry (DSC). The results obtained indicated that the nth order model could not accurately predict the curing performance. However, the autocatalytic approach can be used to estimate the vulcanization reaction mechanism of XNBR/epoxy/XHNTs nanocomposites. The kinetic parameters related to the degradation of XNBR/epoxy/XHNTs nanocomposites were also assessed using thermogravimetric analysis (TGA). TGA measurements suggested that the grafted nanotubes strongly enhanced the thermal stability of the nanocomposite.


2021 ◽  
Vol 410 ◽  
pp. 686-691
Author(s):  
Evgeniy S. Bochkarev ◽  
Dmitriy S. Vostrikov ◽  
Oleg O. Tuzhikov

The paper represents ozone resistance of rubbers based on carboxylated nitrile butadiene rubber cured with epoxy resins and magnesium oxide. Ozone resistance was investigated using the express-method at a flow rate of the ozone-air mixture of 9 l/h and ozone content of 9 mg/l. In the method used, the “time to cracking start” indicator was taken as the basic indicator of ozone resistance. The second indicator characterizing the ozone resistance of elastomeric materials was the "rate of destruction" in the main period of destruction. There has been evaluated the effect of dissolved polyvinyl chloride in epoxy resin ED-20 on the properties of vulcanizates. There has been investigated the Increase in destruction time under the action of ozone.


1968 ◽  
Vol 108 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Margaret Robson Wright ◽  
J. P. Arbuthnott ◽  
I. R. W. Lominski

1. The effect of a number of aromatic polysulphonic acids on the kinetics of haemolysis of rabbit erythrocyte suspensions by crude staphylococcal α-toxin was studied at pH8·6 and 6·8. 2. All of the inhibitory compounds caused an increase in the prelytic lag time (τ) of the sigmoid haemolysis curves, an increase in the time to reach 50% haemolysis (t½) and a decrease in the maximum rate of haemolysis (Rmax.). The most inhibitory compounds caused a 50% decrease in Rmax. at concentrations between 0·1 and 0·2mm. 3. The effect of pH varied considerably: compounds (I) and (II) were almost equally inhibitory at both pH values, compounds (IV) and (IX) were more inhibitory at pH6·8 than at pH8·6, and compounds (VII), (VIII), (X), (XI) and (XII) were more inhibitory at pH8·6. 4. Increased time of premixing α-toxin with compound (I) caused increased inhibition. 5. An attempt was made, where possible, to relate the inhibitory activity to the structure of the test compound.


1932 ◽  
Vol 7 (2) ◽  
pp. 149-161 ◽  
Author(s):  
W. H. Hatcher ◽  
E. W. R. Steacie ◽  
Frances Howland

The kinetics of the oxidation of gaseous acetaldehyde have been investigated from 60° to 120 °C. by observing the rate of pressure decrease in a system at constant volume. A considerable induction period exists, during which the main products of the reaction are carbon dioxide, water, and formic acid. The main reaction in the subsequent stages involves the formation of peroxides and their oxidation products. The heat of activation of the reaction is 8700 calories per gram molecule. The indications are that the reactions occurring during the induction period are heterogeneous. The subsequent reaction occurs by a chain mechanism. The chains are initiated at the walls of the reaction vessel, and are also largely broken at the walls.


1973 ◽  
Vol 99 (3) ◽  
pp. 269-282
Author(s):  
James A. Mueller ◽  
Thomas J. Mulligan ◽  
Dominic M. Di Toro

1997 ◽  
Vol 273 (5) ◽  
pp. H2428-H2435 ◽  
Author(s):  
Thomas Wannenburg ◽  
Paul M. L. Janssen ◽  
Dongsheng Fan ◽  
Pieter P. De Tombe

We tested the hypothesis that the Frank-Starling relationship is mediated by changes in the rate of cross-bridge detachment in cardiac muscle. We simultaneously measured isometric force development and the rate of ATP consumption at various levels of Ca2+ activation in skinned rat cardiac trabecular muscles at three sarcomere lengths (2.0, 2.1, and 2.2 μm). The maximum rate of ATP consumption was 1.5 nmol ⋅ s−1 ⋅ μl fiber vol−1, which represents an estimated adenosinetriphosphatase (ATPase) rate of ∼10 s−1 per myosin head at 24°C. The rate of ATP consumption was tightly and linearly coupled to the level of isometric force development, and changes in sarcomere length had no effect on the slope of the force-ATPase relationships. The average slope of the force-ATPase relationships was 15.5 pmol ⋅ mN−1 ⋅ mm−1. These results suggest that the mechanisms that underlie the Frank-Starling relationship in cardiac muscle do not involve changes in the kinetics of the apparent detachment step in the cross-bridge cycle.


Sign in / Sign up

Export Citation Format

Share Document