scholarly journals DEVELOPMENT AND EVALUATION OF LYOPHILIZED POWDER TO PREPARE SOLUTION FOR INJECTIONS BASED ON DOXYCYCLINE

2021 ◽  
Vol 93 (3) ◽  
pp. 53-63
Author(s):  
E. A. Saliy ◽  
A. Yu. Honcharuk ◽  
O. V. Getalo ◽  
H. V. Tarasenko

The range of doxycycline drugs on the pharmaceutical market of the Ukraine is very limited and is represented by solid forms (capsules and tablets) while a rapid effect and maximum bioavailability of the drug can be provided by parenteral administration. The object of the study is the drug doxycycline hyclate in the form of lyophilisate to prepare solution for injections. During the development of the drug it was taken into account that aqueous doxycycline solution is pH dependent and tends to shift the solution pH during long-term storage. Therefore, excipients such as stabilizer and antioxidant providing buffering properties and stability of the solution were introduced into the composition. According to the research results an optimal composition of lyophilized powder was selected, the production technology with the stage of solution treatment with activated carbon was developed which allowed to obtain lyophilized powder with a well-formed porous mass without splits, cracks and fissures, resistant to shaking, and the prepared solution for parenteral administration is stable by the «Degree of coloration» quality indicator during accelerated storage regimen. It was found that doxycycline hyclate in the form of a lyophilisate shows a wide range of antibacterial activity. Comparative studies in vitro for two drugs, in the form of lyophilisate with doxycycline hyclate for injections and hard gelatin capsules with 100 mg of doxycycline hyclate, confirm equivalence of their bacteriostatic action against bacteria causing infectious diseases in humans.

Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 77
Author(s):  
Elena O. Vidyagina ◽  
Nikolay N. Kharchenko ◽  
Konstantin A. Shestibratov

Axillary buds of in vitro microshoots were successfully frozen at –196 °C by the one-step freezing method using the protective vitrification solution 2 (PVS2). Microshoots were taken from 11 transgenic lines and three wild type lines. Influence of different explant pretreatments were analyzed from the point of their influence towards recovery after cryopreservation. It was found out that the use of axillary buds as explants after removal of the apical one increases recovery on average by 8%. The cultivation on growth medium of higher density insignificantly raises the regenerants survival rate. Pretreatment of the osmotic fluid (OF) shows the greatest influence on the survival rate. It leads to the increase in survival rate by 20%. The cryopreservation technology providing regenerants average survival rate of 83% was developed. It was based on the experimental results obtained with explant pretreatment. Incubation time in liquid nitrogen did not affect the explants survival rate after thawing. After six months cryostorage of samples their genetic variability was analyzed. Six variable simple sequence repeat (SSR) loci were used to analyze genotype variability after the freezing-thawing procedure. The microsatellite analysis showed the genetic status identity of plants after cryopreservation and of the original genotypes. The presence of the recombinant gene in the transgenic lines after cryostorage were confirmed so as the interclonal variation in the growth rate under greenhouse conditions. The developed technique is recommended for long-term storage of various breeding and genetically modified lines of aspen plants, as it provides a high percentage of explants survival with no changes in genotype.


Blood ◽  
2020 ◽  
Vol 136 (22) ◽  
pp. 2535-2547 ◽  
Author(s):  
W. Grey ◽  
R. Chauhan ◽  
M. Piganeau ◽  
H. Huerga Encabo ◽  
M. Garcia-Albornoz ◽  
...  

Abstract Expansion of human hematopoietic stem cells (HSCs) is a rapidly advancing field showing great promise for clinical applications. Recent evidence has implicated the nervous system and glial family ligands (GFLs) as potential drivers of hematopoietic survival and self-renewal in the bone marrow niche; how to apply this process to HSC maintenance and expansion has yet to be explored. We show a role for the GFL receptor, RET, at the cell surface of HSCs in mediating sustained cellular growth, resistance to stress, and improved cell survival throughout in vitro expansion. HSCs treated with the key RET ligand/coreceptor complex, glial-derived neurotrophic factor and its coreceptor, exhibit improved progenitor function at primary transplantation and improved long-term HSC function at secondary transplantation. Finally, we show that RET drives a multifaceted intracellular signaling pathway, including key signaling intermediates protein kinase B, extracellular signal-regulated kinase 1/2, NF-κB, and p53, responsible for a wide range of cellular and genetic responses that improve cell growth and survival under culture conditions.


2017 ◽  
Vol 107 (3) ◽  
pp. 362-368 ◽  
Author(s):  
Wayne M. Jurick ◽  
Otilia Macarisin ◽  
Verneta L. Gaskins ◽  
Eunhee Park ◽  
Jiujiang Yu ◽  
...  

Botrytis cinerea causes gray mold and is an economically important postharvest pathogen of fruit, vegetables, and ornamentals. Fludioxonil-sensitive B. cinerea isolates were collected in 2011 and 2013 from commercial storage in Pennsylvania. Eight isolates had values for effective concentrations for inhibiting 50% of mycelial growth of 0.0004 to 0.0038 μg/ml for fludioxonil and were dual resistant to pyrimethanil and thiabendazole. Resistance was generated in vitro, following exposure to a sublethal dose of fludioxonil, in seven of eight dual-resistant B. cinerea isolates. Three vigorously growing B. cinerea isolates with multiresistance to postharvest fungicides were further characterized and found to be osmosensitive and retained resistance in the absence of selection pressure. A representative multiresistant B. cinerea strain caused decay on apple fruit treated with postharvest fungicides, which confirmed the in vitro results. The R632I mutation in the Mrr1 gene, associated with fludioxonil resistance in B. cinerea, was not detected in multipostharvest fungicide-resistant B. cinerea isolates, suggesting that the fungus may be using additional mechanisms to mediate resistance. Results from this study show for the first time that B. cinerea with dual resistance to pyrimethanil and thiabendazole can also rapidly develop resistance to fludioxonil, which may pose control challenges in the packinghouse environment and during long-term storage.


1993 ◽  
Vol 264 (2) ◽  
pp. C457-C463 ◽  
Author(s):  
I. Dorup ◽  
T. Clausen

In young rats fed a Mg(2+)-deficient diet for 3 wk, Mg2+ and K+ contents in soleus and extensor digitorum longus muscles were significantly reduced and closely correlated. In isolated soleus muscles, Mg2+ depletion induced an even more pronounced loss of K+, and Mg2+ and K+ contents were correlated over a wide range (r = 0.95, P < 0.001). Extracellular Mg2+ (0-1.2 mM) caused no change in total or ouabain-suppressible 86Rb influx. After long-term incubation in Ca(2+)-Mg(2+)-free buffer with EDTA and EGTA, cellular Mg2+ and K+ contents were reduced by 35 and 15%, respectively, without any reduction in ATP and total or ouabain-suppressible 86Rb influx. In Mg(2+)-depleted muscles 42K efflux was increased by up to 42%, and repletion with Mg2+ produced a graded decrease. We conclude that Mg2+ and K+ contents are closely correlated in muscles Mg2+ depleted in vivo or in vitro and that neither extracellular nor moderate intracellular Mg2+ depletion affects total or Na(+)-K+ pump-mediated K+ influx. The reduced K+ content may rather be related to increased K+ efflux from the muscles.


2021 ◽  
pp. 15-17
Author(s):  
Елена Анатольевна Юрова ◽  
Татьяна Викторовна Кобзева

Основной задачей для обеспечения качества функциональных продуктов длительного хранения является наличие методов оценки срока годности, применение которых позволит оценить не только качество продукта, но и его функциональные свойства на протяжении всего срока годности продукта. В настоящее время установлена возможность разработки методики ускоренного хранения для функциональных продуктов на молочной основе длительного хранения с применением метода ASLT и математического моделирования, исходя из имеющихся наработанных статистических данных по показателям окислительной порчи, содержанию свободных аминокислот и параметрам оценки продуктов гидролиза белка. В данной работе приведена оценка роли органолептического анализа при подтверждении срока годности продукции, рассмотрены основные процессы, влияющие на изменение органолептических характеристик при хранении. По результатам выполненной работы даны рекомендации по использованию метода органолептической оценки применительно к функциональным продуктам на молочной основе при использовании методики ускоренного хранения. The main task for ensuring the quality of functional shelf-stable products is the availability of methods for assessing the shelf life, the use of which will allow not only assessing the quality of the product, but also its functional properties throughout the entire shelf life of the product. Currently, the possibility of developing a method of accelerated storage for functional milk-based products for long-term storage using the ASLT method and mathematical modeling has been established, based on the available accumulated statistical data on indicators of oxidative spoilage, the content of free amino acids and parameters for evaluating protein hydrolysis products. This work evaluates the role of organoleptic analysis in confirming the shelf life of products, considers the main processes that affect the change in organoleptic characteristics during storage. Based on the results of the work performed, recommendations were given on the use of the method of organoleptic assessment in relation to functional milk-based products when using the accelerated storage method.


2016 ◽  
Vol 9 (3) ◽  
pp. 379-388 ◽  
Author(s):  
N. De Clercq ◽  
G. Vlaemynck ◽  
E. Van Pamel ◽  
D. Colman ◽  
M. Heyndrickx ◽  
...  

Penicillium expansum is the principal cause of blue mould rot and associated production of patulin, a weak mycotoxin, in apples worldwide. P. expansum growth and patulin production is observed during improper or long-term storage of apples. We have investigated the extent to which each successive step during long-term storage contributes to patulin production in various P. expansum isolates. Fungal isolates collected on apples from several Belgian orchards/industries were identified to species level. Random amplification of polymorphic DNA (RAPD) analysis and β-tubulin gene sequencing identified P. expansum and Penicillium solitum as the most prevalent Penicillium species associated with Belgian apples. All 27 P. expansum isolates and eight reference strains were characterised for their patulin production capacity on apple puree agar medium for five days under classical constant temperature and atmosphere conditions. Under these conditions, a large range of patulin production levels was observed. Based on this phenotypic diversity, five P. expansum isolates and one reference strain were selected for in vitro investigation of patulin production under representative conditions in each step of long-term apple storage. Patulin accumulation seemed highly strain dependent and no significant differences between the storage steps were observed. The results also indicated that a high spore inoculum may lead to a strong patulin accumulation even at cold temperatures (1 °C) combined with controlled atmosphere (CA) (3% O2, 1% CO2), suggesting that future control strategies may benefit from considering the duration of storage under CA conditions as well as duration of deck storage.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1655
Author(s):  
Soňa Felšöciová ◽  
Przemysław Łukasz Kowalczewski ◽  
Tomáš Krajčovič ◽  
Štefan Dráb ◽  
Miroslava Kačániová

Contamination of malting barley grain and malt with micromycetes sampled at various periods post-harvest (3rd, 6th, and 9th month of storage) and types of storage (storage silo and floor warehouse) was investigated. Each of these barley grain samples was malted. This article reports on the changes in the fungal microbiome composition and their overall count in barley grain and malt. From the surface-disinfected barley grain samples collected immediately after harvest, there were eight genera isolated, with a predominance of Alternaria. A small increase of isolated microfungi was detected in barley stored in silo for 3 and 6 months (from 142 isolates to 149) and decreased below the number of isolates in barley before storage (133 isolates). Fungal count during storage gradually decreased up to 9 month in barley stored in floor warehouse (from 142 isolates to 84). The initial total count of microscopic fungi in malt before storage was the highest (112 isolates) with 7 genera detected, compared to malts prepared from barley stored for longer time (54 isolates, 7 genera, 9th month of storage). Alternaria was the most abundant and frequent genus. Quantitative representation of the filamentous microscopic fungi was lower compared to yeasts especially in barley and malt prepared from barley stored at third month of storage in both type of storage. Yeasts were identified from all grain samples and malt samples with mass spectrometry. Most attention was given to the widely distributed fungus Penicillium, 79% of strains produced at least one mycotoxin detected under in vitro assays using the TLC method (97% of them produced griseofulvin, 94% CPA, 79% patulin, 14% roquefortin C, and penitrem A was produced by two screening strains under laboratory conditions). It is therefore important to monitor the microflora throughout the production cycle of “barley to beer”.


Author(s):  
L. N. Katiukhin

Background: The magnetobiological effect of the weakened magnetic field of the Earth is of interest due to the consequences of the long stay of astronauts in space. Objective: The rheological properties of erythrocytes in a weakened magnetic field of the Earth are investigated. Methods: Osmotic gradient ektacytometry, aggregometry. Results: A study of the rheological properties of erythrocytes of blood rats in vitro, exposed at a temperature of 0°C in a natural and weakened magnetic field of the Earth, was carried out. It is established that a weakened magnetic field leads to a decrease in the rate of hemolysis, the average body volume, transformation, and decrease in the specific surface of the erythrocyte, potentiates the weakening of the deformation and aggregation properties. Conclusions: The results of the work should be taken into account not only to predict the rheological behavior of the blood system when the natural magnetic field is weakened but also to optimize the conditions for the long-term storage of donor blood.


Sign in / Sign up

Export Citation Format

Share Document