scholarly journals Fractionated whole body gamma irradiation potentiate high fat diet- induced intestinal inflammation in Wistar rats

2021 ◽  
Vol 19 (3) ◽  
pp. 633-643
Author(s):  
A. Khalil ◽  
H. Omran ◽  
S. Habeel ◽  
F. Alsheikh ◽  
◽  
...  
Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2810 ◽  
Author(s):  
Maria De Luca ◽  
Denise Vecchie’ ◽  
Baskaran Athmanathan ◽  
Sreejit Gopalkrishna ◽  
Jennifer A. Valcin ◽  
...  

Syndecans are transmembrane proteoglycans that, like integrins, bind to components of the extracellular matrix. Previously, we showed significant associations of genetic variants in the Syndecan-4 (SDC4) gene with intra-abdominal fat, fasting plasma glucose levels, and insulin sensitivity index in children, and with fasting serum triglyceride levels in healthy elderly subjects. An independent study also reported a correlation between SDC4 and the risk of coronary artery disease in middle-aged patients. Here, we investigated whether deletion of Sdc4 promotes metabolic derangements associated with diet-induced obesity by feeding homozygous male and female Sdc4-deficient (Sdc4-/-) mice and their age-matched wild-type (WT) mice a high-fat diet (HFD). We found that WT and Sdc4-/- mice gained similar weight. However, while no differences were observed in males, HFD-fed female Sdc4-/- mice exhibited a higher percentage of body fat mass than controls and displayed increased levels of plasma total cholesterol, triglyceride, and glucose, as well as reduced whole-body insulin sensitivity. Additionally, they had an increased adipocyte size and macrophage infiltration in the visceral adipose tissue, and higher triglyceride and fatty acid synthase levels in the liver. Together with our previous human genetic findings, these results provide evidence of an evolutionarily conserved role of SDC4 in adiposity and its complications.


1997 ◽  
Vol 272 (1) ◽  
pp. E147-E154 ◽  
Author(s):  
A. P. Rocchini ◽  
P. Marker ◽  
T. Cervenka

The current study evaluated both the time course of insulin resistance associated with feeding dogs a high-fat diet and the relationship between the development of insulin resistance and the increase in blood pressure that also occurs. Twelve adult mongrel dogs were chronically instrumented and randomly assigned to either a control diet group (n = 4) or a high-fat diet group (n = 8). Insulin resistance was assessed by a weekly, single-dose (2 mU.kg-1.min-1) euglycemic-hyperinsulinemic clamp on all dogs. Feeding dogs a high-fat diet was associated with a 3.7 +/- 0.5 kg increase in body weight, a 20 +/- 4 mmHg increase in mean blood pressure, a reduction in insulin-mediated glucose uptake [(in mumol-kg-1.min-1) decreasing from 72 +/- 6 before to 49 +/- 7 at 1 wk, 29 +/- 3 at 3 wk, and 30 +/- 2 at 6 wk of the high-fat diet, P < 0.01]. and a reduced insulin-mediated increase in cardiac output. In eight dogs (4 high fat and 4 control), the dose-response relationship of insulin-induced glucose uptake also was studied. The whole body glucose uptake dose-response curve was shifted to the right, and the rate of maximal whole body glucose uptake was significantly decreased (P < 0.001). Finally, we observed a direct relationship between the high-fat diet-induced weekly increase in mean arterial pressure and the degree to which insulin resistance developed. In summary, the current study documents that feeding dogs a high-fat diet causes the rapid development of insulin resistance that is the result of both a reduced sensitivity and a reduced responsiveness to insulin.


2011 ◽  
Vol 108 (6) ◽  
pp. 1025-1033 ◽  
Author(s):  
Sumithra Urs ◽  
Terry Henderson ◽  
Phuong Le ◽  
Clifford J. Rosen ◽  
Lucy Liaw

We recently characterised Sprouty1 (Spry1), a growth factor signalling inhibitor as a regulator of marrow progenitor cells promoting osteoblast differentiation at the expense of adipocytes. Adipose tissue-specific Spry1 expression in mice resulted in increased bone mass and reduced body fat, while conditional knockout of Spry1 had the opposite effect with decreased bone mass and increased body fat. Because Spry1 suppresses normal fat development, we tested the hypothesis that Spry1 expression prevents high-fat diet-induced obesity, bone loss and associated lipid abnormalities, and demonstrate that Spry1 has a long-term protective effect on mice fed a high-energy diet. We studied diet-induced obesity in mice with fatty acid binding promoter-driven expression or conditional knockout of Spry1 in adipocytes. Phenotyping was performed by whole-body dual-energy X-ray absorptiometry, microCT, histology and blood analysis. In conditional Spry1-null mice, a high-fat diet increased body fat by 40 %, impaired glucose regulation and led to liver steatosis. However, overexpression of Spry1 led to 35 % (P < 0·05) lower body fat, reduced bone loss and normal metabolic function compared with single transgenics. This protective phenotype was associated with decreased circulating insulin (70 %) and leptin (54 %; P < 0·005) compared with controls on a high-fat diet. Additionally, Spry1 expression decreased adipose tissue inflammation by 45 %. We show that conditional Spry1 expression in adipose tissue protects against high-fat diet-induced obesity and associated bone loss.


2021 ◽  
Author(s):  
Diana Abu Halaka ◽  
Ofer Gover ◽  
Einat Rauchbach ◽  
Shira Zelber-Sagi ◽  
Betty Schwartz ◽  
...  

Nitrites and nitrates are traditional food additives used as curing agents in the food industry. They inhibit the growth of microorganisms and convey a typical pink color to the meat....


2015 ◽  
Vol 35 (6) ◽  
pp. 2349-2359 ◽  
Author(s):  
Youli Xi ◽  
Miaozong Wu ◽  
Hongxia Li ◽  
Siqi Dong ◽  
Erfei Luo ◽  
...  

Background/Aims: Obesity-associated fatty liver disease affects millions of individuals. This study aimed to evaluate the therapeutic effects of baicalin to treat obesity and fatty liver in high fat diet-induced obese mice, and to study the potential molecular mechanisms. Methods: High fat diet-induced obese animals were treated with different doses of baicalin (100, 200 and 400 mg/kg/d). Whole body, fat pad and liver were weighed. Hyperlipidemia, liver steatosis, liver function, and hepatic Ca2+/CaM-dependent protein kinase kinase β (CaMKKβ) / AMP-activated protein kinase (AMPK) / acetyl-CoA carboxylase (ACC) were further evaluated. Results: Baicalin significantly decreased liver, epididymal fat and body weights in high fat diet-fed mice, which were associated with decreased serum levels of triglycerides, total cholesterol, LDL, alanine transaminase and aspartate transaminase, but increased serum HDL level. Pathological analysis revealed baicalin dose-dependently decreased the degree of hepatic steatosis, with predominantly diminished macrovesicular steatosis at lower dose but both macrovesicular and microvesicular steatoses at higher dose of baicalin. Baicalin dose-dependently inhibited hepatic CaMKKβ/AMPK/ACC pathway. Conclusion: These data suggest that baicalin up to 400 mg/kg/d is safe and able to decrease the degree of obesity and fatty liver diseases. Hepatic CaMKKβ/AMPK/ACC pathway may mediate the therapeutic effects of baicalin in high fat diet animal model.


Andrologia ◽  
2021 ◽  
Author(s):  
Comfort Abisola Oladele ◽  
Christopher Oloruntoba Akintayo ◽  
Olabimpe Caroline Badejogbin ◽  
Adesola Adedotun Oniyide ◽  
Adams Olalekan Omoaghe ◽  
...  

Author(s):  
Rizka Veni ◽  
Awal Prasetyo ◽  
Muflihatul Muniroh

This study aims to analyze the effect of combination of motor vehicle particular matter exposure and high-fat diet in kidney histopathology, creatinine levels, and MDA levels in Wistar rats. This study used a posttest-only control group design. Eighteen healthy male Wistar rats were divided into three groups. The intervention groups received motor vehicle fume exposure for 100 s with normal diet (X1) or high-fat diet (X2), and the control group received no exposure (C). Data analysis was processed with a SPSS 25.0 computer program by using the one-way ANOVA test followed by post hoc LSD. The degree of kidney histopathological damage showed significant differences between the X1 and X2 groups when compared with the control group (p < 0.05). The results of the creatinine level examination found a significant difference between the X2 and C groups (p < 0.05) and the treatment groups X1 and X2 (p < 0.05). The results of kidney MDA level examination showed a significant difference between the treatment groups (X1 and X2) and the control group (p < 0.05). The combination of particular matter of motor vehicle fumes exposure and high-fat diet could induce kidney damage through histopathological change and increased creatinine levels and kidney MDA levels in Wistar rats.


Sign in / Sign up

Export Citation Format

Share Document