Green Synthesis, Characterization and Cytotoxic Activity of Gold and Silver Nanoparticles Using Kaempferol-3′-sulfonate

2020 ◽  
Vol 42 (3) ◽  
pp. 440-440
Author(s):  
Xin Bin Yang Xin Bin Yang ◽  
Chun Mei Wang Chun Mei Wang ◽  
Yu Huang Yu Huang

Gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) were synthesized by using water-soluble Kaempferol–3′–sulfonate acid sodium (KS) alone as the reducing agent. The UV-vis spectra confirmed the formation of the ks-AuNPs and ks-AgNPs which were stable for up to 3 months without any other stabilizing agents at room temperature. The TEM studies exhibited monodispersed and mainly spherical nanoparticles with the size in the range of 15-30 nm and 20-50 nm for ks-AuNPs and ks-AgNPs, respectively. The XRD revealed crystallinity of nanoparticles. The chemical state of Au and Ag on the surface of nanoparticles was analyzed by XPS. The FTIR analysis indicated that the hydroxyl of KS were responsible for the reduction of Au3+ and Ag+ to ks-AuNPs and ks-AgNPs, respectively. Cytotoxic activity of ks-AuNPs and ks-AgNPs on MCF-7 cells is higher than the KS.

2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Ratul Kumar Das ◽  
Punuri Jayasekhar Babu ◽  
Nayanmoni Gogoi ◽  
Pragya Sharma ◽  
Utpal Bora

We report a microwave-mediated simple and rapid method of gold nanoparticles (GNPs) synthesis using latex of Calotropis procera. UV-Vis spectroscopic studies indicated the formation of GNPs. The GNPs were stable at room temperature (25°C) for six months. Transmission electron microscope (TEM) micrographs of the synthesized GNPs showed the formation of spherical nanoparticles with an average size of 13 ± 5 nm. SAED and XRD confirmed the crystalline nature of GNPs. Fourier transform infrared (FTIR) analysis indicated the presence of organic coating on the nanoparticles. Cytotoxicity of the GNPs was tested on HeLa and A549 and found to be nontoxic which was indicating that latex of Calotropis procera provided the nontoxic coating on GNPs, thus can be used as biomedical and pharmacological applications.


2021 ◽  
Vol 9 (6) ◽  
pp. 678
Author(s):  
Kaliyamoorthy Kalidasan ◽  
Nabikhan Asmathunisha ◽  
Venugopal Gomathi ◽  
Laurent Dufossé ◽  
Kandasamy Kathiresan

This work deals with the identification of a predominant thraustochytrid strain, the optimization of culture conditions, the synthesis of nanoparticles, and the evaluation of antioxidant and antimicrobial activities in biomass extracts and nanoparticles. Thraustochytrium kinnei was identified as a predominant strain from decomposing mangrove leaves, and its culture conditions were optimized for maximum biomass production of 13.53 g·L−1, with total lipids of 41.33% and DHA of 39.16% of total fatty acids. Furthermore, the strain was shown to synthesize gold and silver nanoparticles in the size ranges of 10–85 nm and 5–90 nm, respectively. Silver nanoparticles exhibited higher total antioxidant and DPPH activities than gold nanoparticles and methanol extract of the strain. The silver nanoparticles showed higher antimicrobial activity than gold nanoparticles and petroleum ether extract of the strain. Thus, Thraustochytrium kinnei is proven to be promising for synthesis of silver nanoparticles with high antioxidant and antimicrobial activity.


RSC Advances ◽  
2021 ◽  
Vol 11 (24) ◽  
pp. 14624-14631
Author(s):  
Pablo Eduardo Cardoso-Avila ◽  
Rita Patakfalvi ◽  
Carlos Rodríguez-Pedroza ◽  
Xochitl Aparicio-Fernández ◽  
Sofía Loza-Cornejo ◽  
...  

Gold and silver nanoparticles were synthesized at room temperature using an aqueous extract from dried rosehips acting as reducing and capping agents with no other chemicals involved.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
M. A. El-Sheikh

The water soluble photoinitiator (PI) 4-(trimethyl ammonium methyl) benzophenone chloride is used for the first time in the synthesis of silver nanoparticles (AgNPs). A new green synthesis method involves using PI/UV system, carboxymethyl starch (CMS), silver nitrate, and water. A mechanism of the reduction of silver ions to AgNPs by PI/UV system as well as by the newly born aldehydic groups was proposed. The synthesis process was assessed by UV-vis spectra and TEM of AgNPs colloidal solution. The highest absorbance was obtained using CMS, PI and AgNO3concentrations of 10 g/L, 1 g/L, and 1 g/L, respectively; 40°C; 60 min; pH 7; and a material : liquor ratio 1 : 20. AgNPs so-obtained were stable in aqueous solution over a period of three weeks at room temperature (~25°C) and have round shape morphology. The sizes of synthesized AgNPs were in the range of 1–21 nm and the highest counts % of these particles were for particles of 6–10 and 1–3 nm, respectively.


2020 ◽  
Vol 4 (2) ◽  

Metal nanoparticles possess an extensive scientific and technological significance due to their unique physiochemical properties and their potential applications in different fields like medicine. Silver and gold nanoparticles have shown to have antibacterial and cytotoxic activities. Conventional methods used in the synthesis of the metal nanoparticles involve use of toxic chemicals making them unsuitable for use in medical field. In our continued effort to explore for simple and eco-friendly methods to synthesize the metal nanoparticles, we here describe synthesis and characterization of gold and silver nanoparticles using Gonaderma lucidum, wild non-edible medicinal mushroom. G. lucidum mushroom contain bioactive compounds which can be involved in the reduction, capping and stabilization of the nanoparticles. Antibacterial activity analysis was done on E. coli and S. aureus. The synthesis was done on ultrasonic bath. Characterization of the metal nanoparticles was done by UV-VIS., High Resolution Transmission Electron Microscope (HRTEM) and FTIR. HRTEM analysis showed that both silver and gold nanoparticles were spherical in shape with an average size of 15.82±3.69 nm for silver and 24.73±5.124nm for gold nanoparticles (AuNPs). FTIR analysis showed OH and -C=C- stretching vibrations, an indication of presence of functional groups of biomolecules capping both gold and silver nanoparticles. AgNPs showed inhibition zones of 15.5±0.09mm and 13.3±0.14mm while AuNPs had inhibition zones of 14.510±0.35 and 13.3±0.50mm on E. coli and S. aureus respectively. The findings indicate the potential use of AgNPs and AuNPs in development of drugs in management of pathogenic bacteria.


2018 ◽  
Vol 5 (4) ◽  
pp. 917-932 ◽  
Author(s):  
Francis J. Osonga ◽  
Phuong Le ◽  
David Luther ◽  
Laura Sakhaee ◽  
Omowunmi A. Sadik

The demand for eco-friendly synthetic methods of metal nanoparticles is on the rise.


2008 ◽  
Vol 6 (3) ◽  
pp. 465-469 ◽  
Author(s):  
Tevhide Özkaya ◽  
Abdulhadi Baykal ◽  
Muhammet Toprak

AbstractWater-soluble Mn3O4 nanocrystals have been prepared through thermal decomposition in a high temperature boiling solvent, 2-pyrrolidone. The final product was characterized with XRD, SEM, TEM, FTIR and Zeta Potential measurements. Average crystallite size was calculated as ∼15 nm using XRD peak broadening. TEM analysis revealed spherical nanoparticles with an average diameter of 14±0.4 nm. FTIR analysis indicated that 2-pyrrolidone coordinates with the Mn3O4 nanocrystals only via O from the carbonyl group, thus confining their growth and protecting their surfaces from interaction with neighboring particles.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Duhita G. Sant ◽  
Tejal R. Gujarathi ◽  
Shrikant R. Harne ◽  
Sougata Ghosh ◽  
Rohini Kitture ◽  
...  

Development of an ecofriendly, reliable, and rapid process for synthesis of nanoparticles using biological system is an important bulge in nanotechnology. Antioxidant potential and medicinal value of Adiantum philippense L. fascinated us to utilize it for biosynthesis of gold and silver nanoparticles (AuNPs and AgNPs). The current paper reports utility of aqueous extract of A. philippense L. fronds for the green synthesis of AuNPs and AgNPs. Effect of various parameters on synthesis of nanoparticles was monitored by UV-Vis spectrometry. Optimum conditions for AuNPs synthesis were 1 : 1 proportion of original extract at pH 11 and 5 mM tetrachloroauric acid, whereas optimum conditions for AgNPs synthesis were 1 : 1 proportion of original extract at pH 12 and 9 mM silver nitrate. Characterization of nanoparticles was done by TEM, SAED, XRD, EDS, FTIR, and DLS analyses. The results revealed that AuNPs and AgNPs were anisotropic. Monocrystalline AuNPs and polycrystalline AgNPs measured 10 to 18 nm in size. EDS and XRD analyses confirmed the presence of elemental gold and silver. FTIR analysis revealed a possible binding of extract to AuNPs through –NH2 group and to AgNPs through C=C group. These nanoparticles stabilized by a biological capping agent could further be utilized for biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document