The effect of inorganic processing during malting on the enzymatic activity of wheat malt

2022 ◽  
pp. 42-45
Author(s):  
Юлия Юрьевна Миллер ◽  
Татьяна Федоровна Киселева ◽  
Лариса Викторовна Пермякова ◽  
Юлия Владимировна Арышева

Определяющей целью солодоращения является повышение ферментативной активности зерна. Нами предлагается способ интенсификации солодоращения пшеницы посредством применения неорганического стимулятора роста «Энерген». В исследовании использовали пшеницу Алтайской селекции трех сортов: «Алтайская 100», «Дуэт» и «Алейская». Предложенный неорганический препарат вносили при замачивании в последнюю замочную воду в количестве 0,6 г/дм и выдерживали с ним в контакте пшеницу в течение 6 ч. За данный период в ферментативной системе обработанного зерна произошли более выраженные изменения в сравнении с контрольным вариантом (необработанным зерном). К концу замачивания уровень активности ферментов опытных образцов стал выше уровня аналогичных активностей ферментов контрольных вариантов на 11,8 и 9,9 % соответственно для амилолитической и протеолитической активностей. Последующее проращивание зерна повысило ферментативную активность пшеничного солода. По окончании 7 сут данной стадии прирост амилолитической активности над активностями необработанного зерна для разных сортов составил от 31,5 до 59,0 %, протеолитической - от 97,8 до 125,4 %. При этом отмечено маловыраженное отличие показателей амилолитической и протеолитической активностей проращиваемого обработанного пшеничного солода шестых и седьмых суток ращения, что позволяет сократить продолжительность данной стадии и всего производства солода на одни сутки. Готовый пшеничный солод отличался высокой ферментативной активностью (в диапазоне для трех сортов): амилолитическая - 344,9-360,8 ед./г, протеолитическая - 324,9-257,8 ед./г, более низкой в сравнении с контрольным вариантом продолжительностью осахаривания - от 18 до 20 мин. Кроме этого, предложенный способ солодоращения позволяет использовать пшеницу с высоким содержанием белка, как, например, сорт «Алейская» с массовой долей белка 14,6 %, поскольку в процессе проращивания под стимулирующим действием неорганического препарата «Энерген» процесс протеолиза протекает более интенсивно, и в конечном солоде содержание белка снижается до 10,4 %. The defining goal of malting is to increase the enzymatic activity of grain. We propose a method for intensifying the malting of wheat through the use of an inorganic growth stimulator «Energen». The study used wheat of the Altai selection of three varieties: «Altai 100», «Duet» and «Aleyskaya». The proposed inorganic preparation was introduced during soaking into the last soak water in an amount of 0.6 g/dm and wheat was kept in contact with it for 6 hours. During this period, more pronounced changes occurred in the enzymatic system of the processed grain in comparison with the control variant (unprocessed grain). By the end of soaking, the enzyme level of the experimental samples is 11.8 and 9.9 % higher than the level of similar enzymes of the control variants, respectively, for amylolytic and proteolytic activities. The subsequent germination of grain increased the enzymatic activity of wheat malt. At the end of seven days of this stage, the increase in amylolytic activity over the activities of unprocessed grain for different varieties ranged of 31.5 to 59.0 %, proteolytic - of 97.8 to 125.4 %. At the same time, there was a little pronounced difference in the indicators of amylolytic and proteolytic activities of the germinated processed wheat malt of the sixth and seventh days of fermentation, which makes it possible to shorten the duration of this stage and the entire malt production by one day. The finished wheat malt was characterized by high enzymatic activity (in the range for three varieties): amylolytic 344.9-360.8 units /g, proteolytic 324.9-257.8 units/g, lower duration of saccharification in comparison with the control variant of 18 to 20 minutes. In addition, the proposed method of malting allows the use of wheat with a high protein content, such as the Aleyskaya variety with a mass fraction of protein of 14.6 %, since during germination under the stimulating effect of the inorganic preparation Energen, the proteolysis process proceeds more intensively, and in the final malt the protein content decreases to 10.4 %.

2008 ◽  
Vol 80 (8) ◽  
pp. 2949-2956 ◽  
Author(s):  
Junfeng Ma ◽  
Zhen Liang ◽  
Xiaoqiang Qiao ◽  
Qiliang Deng ◽  
Dingyin Tao ◽  
...  

2003 ◽  
Vol 285 (6) ◽  
pp. R1453-R1460 ◽  
Author(s):  
S. D. Appleton ◽  
G. E. Lash ◽  
G. S. Marks ◽  
K. Nakatsu ◽  
J. F. Brien ◽  
...  

Although hypoxia induces heme oxygenase (HO)-1 mRNA and protein expression in many cell types, recent studies in our laboratory using human placental tissue have shown that a preexposure to hypoxia does not affect subsequent HO enzymatic activity for optimized assay conditions (20% O2; 0.5 mM NADPH; 25 μM methemalbumin) or HO-1 protein content. One of the consequences of impaired blood flow is glucose deprivation, which has been shown to be an inducer of HO-1 expression in HepG2 hepatoma cells. The objective of the present study was to test the effects of a 24-h preexposure to glucose-deprived medium, in 0.5 or 20% O2, on HO protein content and enzymatic activity in isolated chorionic villi and immortalized HTR-8/SVneo first-trimester trophoblast cells. HO protein content was determined by Western blot analysis, and microsomal HO enzymatic activity was measured by assessment of the rate of CO formation. HO enzymatic activity was increased ( P < 0.05) in both placental models after 24-h preexposure to glucose-deficient medium in 0.5 or 20% O2. Preexposure (24 h) in a combination of low O2 and low glucose concentrations decreased the protein content of the HO-1 isoform by 59.6% ( P < 0.05), whereas preexposure (24 h) to low glucose concentration alone increased HO-2 content by 28.2% in chorionic villi explants ( P < 0.05). In this preparation, HO enzymatic activity correlated with HO-2 protein content ( r = 0.825). However, there was no correlation between HO-2 protein content and HO enzymatic activity in HTR-8/SVneo trophoblast cells preexposed to 0.5% O2 and low glucose concentration for 24 h. These findings indicate that the regulation of HO expression in the human placenta is a complex process that depends, at least in part, on local glucose and oxygen concentrations.


2020 ◽  
Vol 2 (1) ◽  
pp. 16

Keratin, which made up the chicken feather, is difficult to be broken down by the proteolytic enzyme. Annually, millions of tons of chicken feathers are disposed of worldwide as waste without realizing the high protein content in the feather. Due to the presence of keratinase from keratinolytic bacteria, chicken feathers are disposed of together with poultry excreta. Therefore, this study is conducted to study the ability of liquid protein hydrolysate produced by bacteria in poultry excreta to utilize into biofertilizing and biocontrol. Keratinolytic bacteria are identified from poultry excreta by screening. The isolated enzyme was optimized in various conditions such as different pH, temperature, and feather concentration as well as nitrogen and carbon sources. Enzymatic activity increased gradually from 1% to 5% in carbon and nitrogen sources. Liquid protein hydrolysate was used to study the biofertilizing ability on the growth of Cucumis sativus and antibacterial effect on Escherichia coli. Pseudomonas sp. has the capability to degrade the feather on 10th day due to the high enzymatic activity. Pseudomonas sp. shows high enzymatic activity at 37⁰C, pH 8, and feather concentration at 0.5%. The chlorophyll estimation shows a p-value<0.05 after being treated with liquid protein hydrolysate. Liquid protein hydrolysate promoted the growth of Cucumis sativus as well as Pseudomonas sp. The antibacterial properties can also be seen against Escherichia coli. In a nutshell, chicken feather produces liquid protein hydrolysate, which has biofertilizing properties. The full potential of liquid hydrolysate can be understood with further analysis of peptide in protein hydrolysate.


1994 ◽  
Vol 30 (4) ◽  
pp. 477-481
Author(s):  
A. Hadjicristodoulou

SUMMARYThe possibility of growing dry peas in the semi-arid areas of Mediterranean countries was assessed by comparing dry pea (Pisum sativum L.) varieties with the highest yielding barley and durum wheat varieties under rainfed conditions and with supplementary irrigation in Cyprus. The yield of barley cv. Kantara was greater than that of the best pea variety selected, PS 210713, especially under the driest conditions, but the differences between cereals and dry pea varieties were smaller when grown in areas where there was more rain or where supplementary irrigation was supplied. The protein content of the dry seeds and straw of the peas was higher than those of the cereals. It is concluded that selected varieties of dry peas could be grown in dry Mediterranean areas, particularly in rotation with barley or wheat.Pisum sativum L. para zonas mediterráneas


2020 ◽  
Vol 175 ◽  
pp. 03001
Author(s):  
Valentin Golovan ◽  
Mariya Galicheva ◽  
Denis Osepchuk ◽  
Tamara Nepshekueva ◽  
Aleksandr Suvorov

Cows’ milk productivity determining method of includes: determining the amount of milk during control milking, milk sampling and analyzing its fat and protein content for each milking, they are the same indicators for the day; calculating the conversion coefficients of milk amount and the mass fraction of fat and protein for each milking into daily indicators. Then one control milking is performed per day, and the same indicator is calculated for the same type of feeding, maintenance, and milking based on its indicators multiplied by the Corresponding coefficient. The time intervals between milking being unequal, milk productivity is more accurately determined by a single milk yield after a longer interval between them. For this method, milk cows are taken from the tenth day of lactation and more. The method allows reducing labor costs and working hours of operators and laboratory assistants to daily determine the dairy productivity of cows, as well as to reduce the stress load on animals.


1990 ◽  
Vol 36 (11) ◽  
pp. 751-753 ◽  
Author(s):  
Valter R. Linardi ◽  
Katia M. G. Machado

Yeasts (228) isolated for natural habitats were screened for their ability to produce amylases in semisolid medium of wheat bran. Strains of Aureobasidium pullulans, Candida famata, and Candida kefyr showed high enzymatic activity for α-amylase, glucoamylase, and debranching enzyme. Key words: Aureobasidium, Candida, amylolytic yeasts, α-amylase, glucoamylase.


1994 ◽  
Vol 40 (2) ◽  
pp. 106-112 ◽  
Author(s):  
Thomas Krarup ◽  
Lauritz W. Olson ◽  
Hans Peter Heldt-Hansen

The extracellular proteolytic enzymes of eight saprophytic, eucarpic, and monocentric isolates from two genera of the order Spizellomycetales and from one genus of the order Chytridiales (Chytridiomycetes) have been partially characterized. The isolectric points of the proteases were estimated from zymograms and demonstrate the existence of three types of proteolytic activity in most isolates. The proteases were tested against synthetic chromogenic peptide substrates and a selection of cations and more complex compounds, and the results suggest that parts of the extracellular proteolytic activities are due to proteases from two groups: the Ca2+ stabilized proteases and the alkaline serine proteases.Key words: serine proteases, metalloproteases, Chytridiomycetes, isoelectric focusing, chromogenic peptide substrates.


2012 ◽  
Vol 92 (5) ◽  
pp. 857-866
Author(s):  
Wang Hong-Wu ◽  
Hu Hai-Xiao ◽  
Song Tong-Ming ◽  
Chen Shao-Jiang

Wang, H.-W., Hu, H.-X., Song, T.-M. and Chen, S.-J. 2012. Seed traits evaluation from long-term selection of kernel oil concentration in a high-oil maize population KYHO. Can. J. Plant Sci. 92: 857–866. A high-oil maize population, KYHO, was developed over 10 generations by selective breeding for increased kernel oil content (KOC). The objectives of this study were to evaluate kernel oil selection effects, and measure the trait changes and genetic variance in the embryo and endosperm. Oil, protein, and starch content in the embryo and endosperm were estimated by near-infrared reflectance spectroscopy (NIRS). Mass and volume of embryo and endosperm were measured. Selective breeding increased embryo oil content (EMOC) and endosperm oil content (ENOC), especially EMOC, which changed from 315.62 g kg−1C0 to 592.54 g kg−1C10, resulting in an increase in total embryo and endosperm oil content (EEOC) from 43.32 g kg−1C0 to 139.95 g kg−1C10. With selection for increase in EEOC, embryo protein content (EMPC) decreased slightly; however, endosperm protein content (ENPC) and total protein content (EEPC) increased significantly. Embryo and endosperm starch content (EMSC and ENSC) and total starch content (EESC) all decreased substantially with selection. One hundred embryo mass (EMM) was not notably changed with selection, but 100 embryo volume (EMV) increased significantly. Mass and volume of endosperm (ENM and ENV) and total mass and volume of embryo and endosperm (EEM and EEV) all decreased significantly with selection, possibly due to markedly decreased starch content. Linear regression analysis indicated with each 1 g kg−1EEOC increase, EMOC, ENOC, ENPC, EEPC, EMM, and EMV increased 2.74 g kg−1, 0.16 g kg−1, 0.38 g kg−1, 0.36 g kg−1, 0.06 g, and 0.20 mL, respectively, and EMPC, EMSC, ENSC, EESC, EEM, ENM, EEV, and ENV decreased 0.04 g kg−1, 1.48 g kg−1, 0.60 g kg−1, 1.09 g kg−1, 1.26 g, 1.32 g, 0.97 g, and 1.17 mL, rspectively.


Sign in / Sign up

Export Citation Format

Share Document