A brief overview on role of graphene based material in therapeutic management of inflammatory response signalling cascades

Author(s):  
Ruchira Das ◽  
◽  
Priyanka Sow ◽  
Sudatta Dey ◽  
Asmita Samadder ◽  
...  

Graphene is a novel, sp2 carbon atoms bonded, two-dimensional nano-material. Due to their favorable electronic, thermal, optical, and mechanical property, graphene and its derivatives, like graphene oxide (GO) and graphene quantum dots (GQDs) are used in widespread applications. The outstanding potentials of these compounds in the field of nanoelectronics, composite materials, sensors, energy technology etc helped in the rapid development in their functionalization, modulatory effects on various systems of our body. GQDs has been suggested as a new nanomaterial with improved biocompatibility, biodegradability, water solubility and considerably low cytotoxic effects in in vivo models, and are applicable for altering immune responses based on quantum confinement and edge effect properties. The review particularly elucidates the mechanistic approach by which graphene and/ or its derivatives and/ or their nano-compound aid in therapeutic management against myriads of immunological perspectives. GQDs have unique physiochemical properties with carbon sheets showcases out-standing biological response against immunological interventions by altering the activities of t-cell lymphocytes. On the contrary GO plays a vital role in eliciting inflammatory signaling factors by controlling proinflammation and an anti-inflammatory response. Therefore, this review shall help the readers to have an overview of the biomedical application of graphene and its derivatives to design target specific drugs to regulate the immune response based prognosis andcure.

Author(s):  
Noemi Vanerio ◽  
Marco Stijnen ◽  
Bas A. J. M. de Mol ◽  
Linda M. Kock

Abstract Ex vivo systems represent important models to study vascular biology and to test medical devices, combining the advantages of in vitro and in vivo models such as controllability of parameters and the presence of biological response, respectively. The aim of this study was to develop a comprehensive ex vivo vascular bioreactor to long-term culture and study the behavior of native blood vessels under physiologically relevant conditions. The system was designed to allow for physiological mechanical loading in terms of pulsatile hemodynamics, shear stress, and longitudinal prestretch and ultrasound imaging for vessel diameter and morphology evaluation. In this first experience, porcine carotid arteries (n = 4) from slaughterhouse animals were cultured in the platform for 10 days at physiological temperature, CO2 and humidity using medium with blood-mimicking viscosity, components, and stability of composition. As expected, a significant increase in vessel diameter was observed during culture. Flow rate was adjusted according to diameter values to reproduce and maintain physiological shear stress, while pressure was kept physiological. Ultrasound imaging showed that the morphology and structure of cultured arteries were comparable to in vivo. Histological analyses showed preserved endothelium and extracellular matrix and neointimal tissue growth over 10 days of culture. In conclusion, we have developed a comprehensive pulsatile system in which a native blood vessel can be cultured under physiological conditions. The present model represents a significant step toward ex vivo testing of vascular therapies, devices, drug interaction, and as basis for further model developments.


2021 ◽  
Author(s):  
Yang Zheng ◽  
Yunqi Li ◽  
Xianwen Ran ◽  
Di Wang ◽  
Xianghui Zheng ◽  
...  

Abstract The inflammatory response of macrophages has been reported to play a critical role in atherosclerosis. The inflammatory state of macrophages is modified by epigenetic reprogramming. m6A RNA methylation is an epigenetic modification of RNAs. However, little is known about the potential roles and underlying mechanisms of m6A modification in macrophage inflammation. Herein, we showed that the expression of the m6A modification “writer” Mettl14 was increased in coronary heart disease and LPS-stimulated THP-1 cells. Knockdown of Mettl14 promoted M2 polarization of macrophages, inhibited foam cell formation and decreased migration. Mechanistically, the expression of Myd88 and IL-6 was decreased in Mettl14 knockdown cells. Through m6A modification, Mettl14 regulated the stability of Myd88 mRNA. Furthermore, Myd88 affected the transcription of IL-6 via the distribution of p65 in nuclei rather than directly regulating the expression of IL-6 through m6A modification. In vivo, Mettl14 gene knockout significantly reduced the inflammatory response of macrophages and the development of atherosclerotic plaques. Taken together, our data demonstrate that Mettl14 plays a vital role in macrophage inflammation in atherosclerosis via the NF-κB/IL-6 signaling pathway, suggesting that Mettl14 may be a promising therapeutic target for the clinical treatment of atherosclerosis.


1998 ◽  
Vol 42 (11) ◽  
pp. 2824-2829 ◽  
Author(s):  
Seiichi Kobayashi ◽  
Tsutomu Kawata ◽  
Akifumi Kimura ◽  
Kaname Miyamoto ◽  
Koichi Katayama ◽  
...  

ABSTRACT As a consequence of blood-borne bacterial sepsis, endotoxin or lipopolysaccharide (LPS) from the cell walls of gram-negative bacteria can trigger an acute inflammatory response, leading to a series of pathological events and often resulting in death. To block this inflammatory response to endotoxin, a novel lipid A analogue, E5531, was designed and synthesized as an LPS antagonist, and its biological properties were examined in vitro and in vivo. In murine peritoneal macrophages, E5531 inhibited the release of tumor necrosis factor alpha (TNF-α) by Escherichia coli LPS with a 50% inhibitory concentration (IC50) of 2.2 nM, while E5531 elicited no significant increases in TNF-α on its own. In support of a mechanism consistent with antagonism of binding to a cell surface receptor for LPS, E5531 inhibited equilibrium binding of radioiodinated LPS ([125I]2-(r-azidosalicylamido)-1, 3′-dithiopropionate-LPS) to mouse macrophages with an IC50 of 0.50 μM. E5531 inhibited LPS-induced increases in TNF-α in vivo when it was coinjected with LPS into C57BL/6 mice primed with Mycobacterium bovis bacillus Calmette-Guérin (BCG). In this model, the efficacy of E5531 was inversely correlated to the LPS challenge dose, consistent with a competitive antagonist-like mechanism of action. Blockade of the inflammatory response by E5531 could further be demonstrated in other in vivo models: E5531 protected BCG-primed mice from LPS-induced lethality in a dose-dependent manner and suppressed LPS-induced hepatic injury in Propionibacterium acnes-primed or galactosamine-sensitized mice. These results argue that the novel synthetic lipid A analogue E5531 can antagonize the action of LPS in in vitro and suppress the pathological effects of LPS in vivo in mice.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 273-273 ◽  
Author(s):  
Peter Peterson ◽  
Katherine K. Soh ◽  
Ye Sol Lee ◽  
Wontak Kim ◽  
Clifford J. Whatcott ◽  
...  

Abstract Hepcidin, a key liver peptide hormone, is essential to the regulation of bioavailable iron and erythropoiesis. Activin-like kinase receptor 2 (ALK2) signaling, via SMAD transcription factors, plays an important part in the regulation of hepcidin expression induced by pro-inflammatory cytokines. In chronic inflammatory conditions, such as rheumatoid arthritis, chronic kidney disease, colitis, and in some forms of cancer, hepcidin expression is induced. This induction of hepcidin expression results in lower levels of bioavailable iron, ultimately leading to the onset of anemia. Hepcidin regulates bioavailable iron levels by binding to and inhibiting the cellular iron pump, ferroportin. Ferroportin is important to macrophage-based iron recycling and dietary iron absorption. Several reports have suggested that lowering hepcidin provides a novel approach for targeting the clinical challenge of anemia. Currently approved approaches for these patients rely on transfusions and the use of erythropoietin-based therapies. Unfortunately, neither of these approaches address the underlying chronic inflammation or hepcidin induction and resulting anemia. In this report, we validate our small molecule inhibitor of ALK2, TP-0184, for the treatment of hepcidin-driven anemia of chronic diseases. Biochemical assays demonstrate that TP-0184 inhibits of the kinase activity of ALK2 with an IC50 of 5 nM. In vitro, TP-0184 is effective at targeting hepcidin expression with an EC50 lower than 100 nM in HepG2 cells. Three in vivo models were also explored for our validation of TP-0184. In our first study, turpentine oil TO was injected into the intrascapular fat pad of C57BL/6 mice to induce an acute inflammatory response that results in hepcidin-driven anemia. The animals were dosed with TP-0184 1 hour prior to TO treatment and once again 8 hours later. The TO-mediated acute inflammatory response in mice resulted in a 14-fold increase in liver hepcidin levels. Two oral doses of TP-0184 at 100 mg/kg, separated by 8 hours, reversed the induction of hepcidin that followed TO treatment. TP-0184 was tested at multiple doses in which efficacy was observed. In our second in vivo model, we induced anemia via intraperitoneal injection with heat-inactivated Brucella abortus. The mice were treated daily with TP-0184 for 3-7 days, after which, whole blood, plasma and livers were collected, from which liver and plasma hepcidin, plasma iron, and complete blood counts were assessed. Treatment with 100 mg/kg TP-0184 completely abrogated the Brucella abortus-induced reduction of hemoglobin and total red blood cell counts. In our third in vivo study, TP-0184 was also evaluated in the TC-1 lung cancer model for cancer-induced anemia. TC-1 tumor-bearing animals exhibited a 3-fold increase in liver hepcidin levels, which was reversed by dosing with 25 mg/kg TP-0184. From these experiments, we conclude that TP-0184 is a potent and selective inhibitor of ALK2 with demonstrated activity in multiple preclinical models of anemia associated with inflammation. TP-0184 also demonstrates favorable pharmacokinetic properties as well as good drug-like qualities, making it a strong candidate molecule with which to move into IND-enabling studies and formal clinical development. The current study supports a clinical development approach focused on anemia of chronic disease where an erythropoietin-sparing approach might offer significant clinical benefit to patients. Disclosures Peterson: Tolero Pharmaceuticals: Employment. Soh:Tolero Pharmaceuticals: Employment. Lee:Tolero Pharmaceuticals: Employment. Kim:Tolero Pharmaceuticals: Employment. Whatcott:Tolero Pharmaceuticals: Employment. Siddiqui-Jain:Tolero Pharmaceuticals: Employment. Bearss:Tolero Pharmaceuticals: Employment. Warner:Tolero Pharmaceuticals: Employment.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Huan Cao ◽  
Lixia Duan ◽  
Yan Zhang ◽  
Jun Cao ◽  
Kun Zhang

AbstractHydrogel is a type of versatile platform with various biomedical applications after rational structure and functional design that leverages on material engineering to modulate its physicochemical properties (e.g., stiffness, pore size, viscoelasticity, microarchitecture, degradability, ligand presentation, stimulus-responsive properties, etc.) and influence cell signaling cascades and fate. In the past few decades, a plethora of pioneering studies have been implemented to explore the cell–hydrogel matrix interactions and figure out the underlying mechanisms, paving the way to the lab-to-clinic translation of hydrogel-based therapies. In this review, we first introduced the physicochemical properties of hydrogels and their fabrication approaches concisely. Subsequently, the comprehensive description and deep discussion were elucidated, wherein the influences of different hydrogels properties on cell behaviors and cellular signaling events were highlighted. These behaviors or events included integrin clustering, focal adhesion (FA) complex accumulation and activation, cytoskeleton rearrangement, protein cyto-nuclei shuttling and activation (e.g., Yes-associated protein (YAP), catenin, etc.), cellular compartment reorganization, gene expression, and further cell biology modulation (e.g., spreading, migration, proliferation, lineage commitment, etc.). Based on them, current in vitro and in vivo hydrogel applications that mainly covered diseases models, various cell delivery protocols for tissue regeneration and disease therapy, smart drug carrier, bioimaging, biosensor, and conductive wearable/implantable biodevices, etc. were further summarized and discussed. More significantly, the clinical translation potential and trials of hydrogels were presented, accompanied with which the remaining challenges and future perspectives in this field were emphasized. Collectively, the comprehensive and deep insights in this review will shed light on the design principles of new biomedical hydrogels to understand and modulate cellular processes, which are available for providing significant indications for future hydrogel design and serving for a broad range of biomedical applications.


Author(s):  
Cina Mehrvar ◽  
Emily Deignan ◽  
Mark Hurtig ◽  
Gideon Cohen ◽  
Paul Zalzal ◽  
...  

AbstractWire cerclage remains the standard method of care for sternal fixation, following median sternotomy, despite being beset with complications. An emerging treatment option has been to augment the wires with an adhesive. A patented ionomeric glass (mole fraction: SiO2:0.48, ZnO:0.36, CaO:0.12, SrO:0.04) has been used to formulate GPC+, a glass polyalkenoate cement (GPC), by mixing it with poly(acrylic) acid (PAA) and de-ionized water. In a human cadaver study, this material, when applied with wire cerclage, was able to significantly reduce sternal instability. However, the material has yet to be tested in pertinent animal models. Here, after a series of physical and mechanical tests to confirm suitability of the experimental material for implantation, three samples of GPC+ were implanted in either the tibia or femur of three different rabbits, alongside sham defects, for two different time modalities. A further seven samples of GPC+ and one poly(methyl methacrylate) control (PMMA) were implanted in either the tibia or femur of two different sheep. The sheep containing the PMMA was sacrificed at 8 weeks and the other at 16 weeks, to evaluate time dependent biological response. Upon sacrifice, microCT images were acquired and histology slides prepared for analysis. All three GPC+ samples implanted in the rabbit model, for the two time modalities, were characterized by minimal bone resorption along with a mild inflammatory response. Five of the seven GPC+ materials implanted in the sheep model (all three implanted for 8 weeks and two of those implanted for 16 weeks) were associated with mild to moderate immune response, comparable to that observed with PMMA, as well as mild bone resorption. The remaining two GPC + materials (implanted in the sheep model for 16 weeks) exhibited no bone resorption or inflammatory response and appeared to stimulate increased bone density at the implant site. These results suggest that GPC + can be a viable bone adhesive for use in hard tissue applications such as sternal fixation and stabilization.


2015 ◽  
Vol 123 (2) ◽  
pp. 389-408 ◽  
Author(s):  
Laura R. A. Schouten ◽  
Marcus J. Schultz ◽  
Anton H. van Kaam ◽  
Nicole P. Juffermans ◽  
Albert P. Bos ◽  
...  

Abstract Background: Advanced age is associated with an increased susceptibility and mortality of the acute respiratory distress syndrome. This may be due to the progressive changes in innate immune responses and intrinsic properties of the lung that occur during the process of aging. Therefore, this study assesses the association between maturation and aging and pulmonary responses to injury in animal models of lung injury. Methods: A systematic search was conducted in PubMed, EMBASE (up to June 2014) and in the references of relevant articles to identify the studies using in vivo models of lung injury caused by an acute pulmonary insult, in which at least two age groups were compared. Because methodological diversity precluded combining these studies in a quantitative meta-analysis, data are presented based on the qualitative comparison with the adult group. Results: Of the 2,840 identified studies, 51 were included in this review. Most studies showed that, in response to a pulmonary insult, increasing age is associated with more pulmonary inflammation, edema, alveolar damage, and higher mortality. In addition, results indicate the existence of age-dependent changes in key components of the intracellular signaling pathways involved in the inflammatory response. Conclusions: Increasing age seems to be correlated with exaggerated pulmonary responses to injury, ultimately leading to more severe lung injury. Pulmonary inflammation seems relatively suppressed in infants/juveniles, whereas in the middle aged/elderly, the inflammatory response seems delayed but aggravated. This implies that investigators and clinicians need to use caution about extrapolating results from adolescent or youngadult animals to pediatric or elderly patients in clinical practice.


2019 ◽  
Vol 20 (6) ◽  
pp. 1498 ◽  
Author(s):  
Qingliang Yang ◽  
Jordan Langston ◽  
Yuan Tang ◽  
Mohammad Kiani ◽  
Laurie Kilpatrick

Protein Kinase C (PKC) is a family composed of phospholipid-dependent serine/threonine kinases that are master regulators of inflammatory signaling. The activity of different PKCs is context-sensitive and these kinases can be positive or negative regulators of signaling pathways. The delta isoform (PKCδ) is a critical regulator of the inflammatory response in cancer, diabetes, ischemic heart disease, and neurodegenerative diseases. Recent studies implicate PKCδ as an important regulator of the inflammatory response in sepsis. PKCδ, unlike other members of the PKC family, is unique in its regulation by tyrosine phosphorylation, activation mechanisms, and multiple subcellular targets. Inhibition of PKCδ may offer a unique therapeutic approach in sepsis by targeting neutrophil-endothelial cell interactions. In this review, we will describe the overall structure and function of PKCs, with a focus on the specific phosphorylation sites of PKCδ that determine its critical role in cell signaling in inflammatory diseases such as sepsis. Current genetic and pharmacological tools, as well as in vivo models, that are used to examine the role of PKCδ in inflammation and sepsis are presented and the current state of emerging tools such as microfluidic assays in these studies is described.


Cells ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 134
Author(s):  
Liyan Zhu ◽  
Ziyi Han ◽  
Yanfei He ◽  
Hongxiang Sun

Platycodin D (PD) is a potent adjuvant with dual Th1 and Th2 potentiating activity, but its mechanisms of action remain unclear. Here, the C2C12 myoblast cell line and mice were used as in vitro and in vivo models to identify potential signaling pathways involved in the adjuvant activity of PD. PD induced a transient cytotoxicity and inflammatory response in the C2C12 cells and in mouse quadricep muscles. A comparative analysis of microarray data revealed that PD induced similar gene expression profiles in the C2C12 cells and in the quadricep muscles, and triggered rapid regulation of death, immune, and inflammation-related genes, both in vivo and in vitro. It was further demonstrated that caspase-1-dependent pyroptosis was involved in the PD-induced cytotoxicity and inflammatory response in the C2C12 cells via the Ca2+–c-jun N-terminal kinase (JNK)/p38 mitogen-activated protein kinase (MAPK)–NLR family pyrin domain containing 3 (NLRP3) inflammasome signaling pathway. Consistently, the in vivo analysis revealed that a local blockage of NLRP3 and caspase-1 inhibited PD-induced cytokine production and immune cell recruitment at the injection site, and impaired the adjuvant activity of PD on antigen-specific immune responses to model antigen ovalbumin (OVA) in mice. These findings identified the caspase-1-dependent adjuvanticity of PD and expanded the current knowledge on the mechanisms of action of saponin-based adjuvants.


2020 ◽  
Vol 12 (6) ◽  
pp. 36
Author(s):  
A.E. Bokov ◽  
A.A. Bulkin ◽  
D.V. Davydenko ◽  
N.Yu. Orlinskaya ◽  
M.N. Egorikhina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document