scholarly journals CFD MODELLING OF VOLTACAR ELECTRIC VEHICLE BODY FOR THE MOST EFFICIENT DRIVING CONDITIONS

2021 ◽  
Vol 1 (3) ◽  
Author(s):  
Yakup Ogun Süzen ◽  
Emre Özdoğan ◽  
İbrahim San ◽  
Batuhan Gürbüz ◽  
Mehmet Kaçar ◽  
...  

In recent years, fossil fuels prices, greenhouse gas emissions, and need for sustainable energy sources have been increasing day by day. Thus, electric vehicles are seen as a promising candidate in the market due to their low-costs and cleaner fuel options such as electricity, hydrogen etc. Moreover, aerodynamics is one of the most important criteria to consider while designing an automobile for the most efficient driving conditions. For this reason, vehicle developers are studying to reduce drag resistance of the body to improve driving efficiency. On the other hand, Computational Fluid Dynamics (CFD) is one of the main tools for the automotive industry to obtain low-cost results before prototyping of any product. In this study, the aerodynamic characteristics of VoltaCAR electric vehicle is numerically investigated to obtain the best driving velocity. This car participates the TUBITAK-Electromobile car competition every year to achieve low fuel consumption for one hour driving. Thus, it is aimed that to minimize the resistance of the air hitting from the front, side, and roof of the vehicle. In the numerical model, polyhedral mesh structure is preferred to obtain faster convergence with fewer iterations, and shorter computation time is obtained compared to the tetrahedral mesh method. The aerodynamic drag coefficient (Cd) of the car model was calculated as approximately 0.17 at 22.22 and 27.78 m/s. The optimum velocity values were selected as 22.22 and 27.78 m/s by means of their lower Cd.

2020 ◽  
Vol 5 (1) ◽  
pp. 1
Author(s):  
Lydia Anggraini ◽  
Ida Bagus Madra Gana

<p>This paper presents a study of a composite car body using finite element method. The body is made of surface model and the study is conducted to simulate the possible deformation of the body under certain load. The objective is to find tha ideal thickness of the composite body as to minimize the vehicle weight. In this research, the strength analysis using finite elements will be explained and the deformation of the body is investigated for finding a possibility to improve this research.</p>


2014 ◽  
Vol 620 ◽  
pp. 335-340 ◽  
Author(s):  
Li Xia Wang ◽  
Tian Feng Zhao ◽  
Jian Bo Cao ◽  
Ji Feng Shen ◽  
Yan Bin Xiao ◽  
...  

Considering the efficient use of energy and environmental pollution, people's lives tend to energy saving and environmental protection, and energy saving electric vehicles has gradually been widely used. Through combining theoretical analysis, numerical simulation, system design and experimental validation, based on studying electric vehicle body design principles, the experiment optimized electric vehicle body design, and reduced the weight of the vehicle effectively. Its performance becomes more advanced, and the application becomes more economical and safe. By using Solidworks software, lightweight electric vehicle body structure of two-dimensional design and three-dimensional modeling was built to reach practical requirements. The body structure design is original and simple, which has good practical value.


2018 ◽  
Vol 6 (3) ◽  
pp. 121
Author(s):  
Vidsvara Putra Krisnanandha ◽  
Kadek Rihendra Dantes ◽  
I Nyoman Pasek Nugraha

Menyelam merupakan salah satu kegiatan yang dilakukan manusia didalam air. Kegiatan tersebut memiliki banyak tujuan seperti olahraga, penjelajah, melihat keindahan wisata bahari dan bahkan penelitian. Oleh karena itu dibutuhkan alat bantu kendaraan untuk memudahkan manusia dalam menyelam atau bergerak didalam air, merancang sebuah kendaraan yang harus diperhatikan adalah komponen-komponen salah satunya bodi kendaraan. Dalam sebuah bentuk rancangan bodi akan terjadi sebuah fenomena aliran fluida yang menyebabkan terjadi sebuah gaya hambat (drag) yang sering dianggap menggangu atau menghambat pergerakan sebuah kendaraan yang melalui sebuah fluida. Untuk itu, analisis aliran fluida pada bodi kendaraan listrik Ganesha Scooter Underwater dengan menggunakan software Solidworks 2018 dengan tujuan untuk mengetahui karakteristik dan besaran coefficient of drag. Setelah melakukan analisis dengan menggunakan software Solidworks 2018 bodi kendaraan listrik Ganesha Scooter Underwater mendapatkan penurunan nilai rata-rata pressure sebesar 4,25%, nilai velocity meningkat 2,9% dan nilai coefficient of drag menurun 8,38% setelah dilakukan modifikasi desain bodi kendaraan listrik Ganesha Scooter Underwater. Dapat dikatakan desain modifikasi lebih aerodinamis dibandingkan desain standar.Kata Kunci : aliran fluida, software solidworks, bodi, coefficient of drag. Diving is one of the activities carried out by humans in water. These activities have many goals such as sports, explorers, seeing the beauty of marine tourism and even research. Therefore a vehicle tool is needed to make it easier for humans to dive or move in the water, designing a vehicle that must be considered are the components of one of the vehicle bodies. In a body design form there will be a phenomenon of fluid flow that causes a drag to occur which is often considered to interfere with or inhibit the movement of a vehicle through a fluid. For this reason, fluid flow analysis on the body of the electric vehicle Underwater Scooter using the software Solidworks 2018 with the aim to determine the characteristics and magnitude of the drag coefficient. After analyzing using Solidworks 2018 body of electric vehicle, Underwater Ganesha Scooter software has decreased the average value of pressure by 4.25%, velocity value increased by 2.9% and coefficient of drag value decreased by 8.38% after modification of vehicle body design Electric Ganesha Scooter Underwater. It can be said the modified design is more aerodynamic than the standard designkeyword : fluid flow, solidworks software, body, drag coefficient.


2021 ◽  
Vol 13 (5) ◽  
pp. 2836
Author(s):  
Khawar Shahzad ◽  
Muhammad Sultan ◽  
Muhammad Bilal ◽  
Hadeed Ashraf ◽  
Muhammad Farooq ◽  
...  

Poultry are one of the most vulnerable species of its kind once the temperature-humidity nexus is explored. This is so because the broilers lack sweat glands as compared to humans and undergo panting process to mitigate their latent heat (moisture produced in the body) in the air. As a result, moisture production inside poultry house needs to be maintained to avoid any serious health and welfare complications. Several strategies such as compressor-based air-conditioning systems have been implemented worldwide to attenuate the heat stress in poultry, but these are not economical. Therefore, this study focuses on the development of low-cost and environmentally friendly improved evaporative cooling systems (DEC, IEC, MEC) from the viewpoint of heat stress in poultry houses. Thermodynamic analysis of these systems was carried out for the climatic conditions of Multan, Pakistan. The results appreciably controlled the environmental conditions which showed that for the months of April, May, and June, the decrease in temperature by direct evaporative cooling (DEC), indirect evaporative cooling (IEC), and Maisotsenko-Cycle evaporative cooling (MEC) systems is 7–10 °C, 5–6.5 °C, and 9.5–12 °C, respectively. In case of July, August, and September, the decrease in temperature by DEC, IEC, and MEC systems is 5.5–7 °C, 3.5–4.5 °C, and 7–7.5 °C, respectively. In addition, drop in temperature-humidity index (THI) values by DEC, IEC, and MEC is 3.5–9 °C, 3–7 °C, and 5.5–10 °C, respectively for all months. Optimum temperature and relative humidity conditions are determined for poultry birds and thereby, systems’ performance is thermodynamically evaluated for poultry farms from the viewpoint of THI, temperature-humidity-velocity index (THVI), and thermal exposure time (ET). From the analysis, it is concluded that MEC system performed relatively better than others due to its ability of dew-point cooling and achieved THI threshold limit with reasonable temperature and humidity indexes.


Author(s):  
Yang Gao ◽  
Yincheng Jin ◽  
Jagmohan Chauhan ◽  
Seokmin Choi ◽  
Jiyang Li ◽  
...  

With the rapid growth of wearable computing and increasing demand for mobile authentication scenarios, voiceprint-based authentication has become one of the prevalent technologies and has already presented tremendous potentials to the public. However, it is vulnerable to voice spoofing attacks (e.g., replay attacks and synthetic voice attacks). To address this threat, we propose a new biometric authentication approach, named EarPrint, which aims to extend voiceprint and build a hidden and secure user authentication scheme on earphones. EarPrint builds on the speaking-induced body sound transmission from the throat to the ear canal, i.e., different users will have different body sound conduction patterns on both sides of ears. As the first exploratory study, extensive experiments on 23 subjects show the EarPrint is robust against ambient noises and body motions. EarPrint achieves an Equal Error Rate (EER) of 3.64% with 75 seconds enrollment data. We also evaluate the resilience of EarPrint against replay attacks. A major contribution of EarPrint is that it leverages two-level uniqueness, including the body sound conduction from the throat to the ear canal and the body asymmetry between the left and the right ears, taking advantage of earphones' paring form-factor. Compared with other mobile and wearable biometric modalities, EarPrint is a low-cost, accurate, and secure authentication solution for earphone users.


Author(s):  
DB Heyner ◽  
G Piazza ◽  
E Beeh ◽  
G Seidel ◽  
HE Friedrich ◽  
...  

A promising approach for the development of sustainable and resource-saving alternatives to conventional material solutions in vehicle structures is the use of renewable raw materials. One group of materials that has particular potential for this application is wood. The specific material properties of wood in the longitudinal fiber direction are comparable to typical construction materials such as steel or aluminum. Due to its comparatively low density, there is a very high lightweight construction potential especially for bending load cases. Structural components of the vehicle body are exposed to very high mechanical loads in the case of crash impact. Depending on the component under consideration, energy has to be absorbed and the structural integrity of the body has to be ensured in order to protect the occupants. The use of natural materials such as wood poses particular challenges for such applications. The material characteristics of wood are dispersed, and depend on environmental factors such as humidity. The aim of the following considerations was to develop a material system to ensure the functional reliability of the component. The test boundary conditions for validation also play a key role in this context. The potential of wood–steel hybrid design based on laminated veneer lumber and steel was investigated for use in a component subjected to crash loads such as the door impact beam. The chosen solution involves a separation of functions. A laminated veneer lumber-based beam was hybridized with a steel strip on the tension side. The steel strip was designed to compensate the comparatively low elongation at fracture of the wood and to ensure the integrity of the beam. The wooden component was designed for high energy absorption due to delamination and controlled failure during the impact, while maintaining the surface moment of inertia, i.e. the bending stiffness of the entire component. This approach was chosen to ensure the functional safety of the component, avoid sudden component failure and utilize the high potential of both materials. The tests carried out provided initial functional proof of the chosen solution. The hybridization achieved significantly higher deformations without sudden failure of the beam. In addition, bending capabilities were increased significantly compared to a beam without hybridization. In comparison with a state-of-the-art steel beam, the hybrid beam was not able to achieve the maximum deformation and the target weight of the hybrid beam. Further optimization of the hybrid beam is therefore necessary.


2008 ◽  
Vol 15 (1) ◽  
pp. 51-60 ◽  
Author(s):  
C.Q. Liu

In this paper, an improved FRF-based substructure synthesis method combined with power flow analysis is presented and is used for performing a vehicle axle noise analysis. The major transfer paths of axle noise transmitted from chassis to vehicle body are identified and ranked based on power flows transmitted through bushings between the chassis and body. To calculate the power flows, it is necessary to know the reaction forces and the vibrations at the bushing locations on the body side. To this end, the body is represented in terms of experimentally derived frequency response functions (FRF's) at the bushing locations, and the FRF's are coupled with the FEA model of the chassis for performing a total system dynamic analysis. This paper also describes how the FRF's of the vehicle body and the frequency dependent stiffness data of the bushings can be combined together with a simple formulation to better represent the dynamic characteristics of a full vehicle. A classical example is used to illustrates the concept of the method, and the method is then applied to a vehicle axle noise analysis with detailed procedure. The theoretical predictions are compared with experimentally measured results. Good correlation has been obtained.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Rebecca N. Monastero ◽  
Srinivas Pentyala

Cytokines, including interleukins, interferons, tumor necrosis factors, and chemokines, have a variety of pro- and anti-inflammatory effects in the body through a number of biochemical pathways and interactions. Stimuli, actions, interactions, and downstream effects of cytokines have been investigated in more depth in recent years, and clinical research has also been conducted to implicate cytokines in causal patterns in certain diseases. However, particular cutoffs of cytokines as biomarkers for disease processes have not been well studied, and this warrants future work to potentially improve diagnoses for diseases with inflammatory markers. A limited number of studies in this area are reviewed, considering diseases correlated with abnormal cytokine profiles, as well as specific cutoffs at which cytokines have been deemed clinically useful for diagnosing those diseases through Receiver Operator Characteristics modeling. In light of studies such as those discussed in this review, cytokine testing has the potential to support diagnosis due to its lack of invasiveness and low cost, compared to other common types of testing for infections and inflammatory diseases.


Sign in / Sign up

Export Citation Format

Share Document