scholarly journals Hesperidin Alleviates Cecal Ligation and Puncture-Induced Lung and Kidney Injuries

2022 ◽  
Vol 8 (1) ◽  
pp. 1-8
Author(s):  
Derya Güzel ERDOĞAN ◽  
Ayhan TANYELİ ◽  
Fazile Nur EKİNCİ AKDEMİR ◽  
Mustafa Can GÜLER ◽  
Ersen ERASLAN ◽  
...  
2021 ◽  
Vol 19 ◽  
pp. 205873922110008
Author(s):  
Xiaoming Zhang ◽  
Xiaojie Zhou

Sepsis is a fatal infectious disease accompanied by multiple organ failure. Immune dysfunction and inflammatory response play an important role in the progression of the disease. Tripterygium glycoside (TG) has immune suppression and anti-inflammatory effects. Here, we investigated the effects of TG on cecal ligation and puncture (CLP)-induced sepsis. Septic mice model was induced by cecal ligation and puncture(CLP), after administration of TG, specimens are collected at designated time points. Histopathology changes of lung tissues and Kidney tissues were observed under light microscope, magnetic microbeads were used to isolate splenic CD4+CD25+ regulatory T cells (Tregs), and phenotypes were then analyzed by flow cytometry. ELISA method was employed to detect the concentrations of plasma TNF-α, IL-6, and IL-10. Nuclear p-NF-κB and Cytoplasmic IkB-a was detected by western blot. TG administration significantly alleviated lung and kidney inflammatory injury and improved the survival of septic mice. Furthermore, the suppressive function of regulatory T cells was enhanced and plasma expression of IL-10 was increased following TG treatment. The NF-B signaling pathway and secretion of plasma TNF-α and IL-6 was notably inhibited in septic mice treated with TG. TG exerts protective effects through improving regulatory T cells and attenuating pro-inflammatory cytokines in septic mice.


2020 ◽  
Vol 18 (2) ◽  
pp. 201-206
Author(s):  
Qiu Nan ◽  
Xu Xinmei ◽  
He Yingying ◽  
Fan Chengfen

Sepsis, with high mortality, induces deleterious organ dysfunction and acute lung injury. Natural compounds show protective effect against sepsis-induced acute lung injury. Juglone, a natural naphthoquinone, demonstrates pharmacological actions as a pro-apoptotic substrate in tumor treatment and anti-inflammation substrate in organ injury. In this study, the influence of juglone on sepsis-induced acute lung injury was investigated. First, a septic mice model was established via cecal ligation and puncture, and then verified via histopathological analysis of lung tissues, the wet/dry mass ratio and myeloperoxidase activity was determined. Cecal ligation and puncture could induce acute lung injury in septic mice, as demonstrated by alveolar damage and increase of wet/dry mass ratio and myeloperoxidase activity. However, intragastric administration juglone attenuated cecal ligation and puncture-induced acute lung injury. Secondly, cecal ligation and puncture-induced increase of inflammatory cells in bronchoalveolar lavage fluid was also alleviated by the administration of juglone. Similarly, the protective effect of juglone against cecal ligation and puncture-induced acute lung injury was accompanied by a reduction of pro-inflammatory factor secretion in bronchoalveolar lavage fluid and lung tissues. Cecal ligation and puncture could activate toll-like receptor 4/nuclear factor-kappa B signaling pathway, and administration of juglone suppressed toll-like receptor 4/nuclear factor-kappa B activation. In conclusion, juglone attenuated cecal ligation and puncture-induced lung damage and inflammatory response through inactivation of toll-like receptor 4/nuclear factor-kappa B, suggesting a potential therapeutic strategy in the treatment of sepsis-induced acute lung injury.


2019 ◽  
Vol 18 (2) ◽  
pp. 176-182
Author(s):  
Chen Weiyan ◽  
Deng Wujian ◽  
Chen Songwei

Acute lung injury is a clinical syndrome consisting of a wide range of acute hypoxemic respiratory failure disorders. Sepsis is a serious complication caused by an excessive immune response to pathogen-induced infections, which has become a major predisposing factor for acute lung injury. Taxifolin is a natural flavonoid that shows diverse therapeutic benefits in inflammation- and oxidative stress-related diseases. In this study, we investigated the role of taxifolin in a mouse model of cecal ligation and puncture-induced sepsis. Cecal ligation and puncture-operated mice presented damaged alveolar structures, thickened alveolar walls, edematous septa, and hemorrhage compared to sham-treated controls. Cecal ligation and puncture mice also showed increased wet-to-dry (W/D) lung weight ratio and elevated total protein concentration and lactate dehydrogenase level in bronchoalveolar lavage fluid. Taxifolin treatment protected animals against sepsis-induced pulmonary damage and edema. Septic mice presented compromised antioxidant capacity, whereas the administration of taxifolin prior to cecal ligation and puncture surgery decreased malondialdehyde concentration and enhanced the levels of reduced glutathione and superoxide dismutase in mice with sepsis-induced acute lung injury. Moreover, cecal ligation and puncture-operated mice showed markedly higher levels of proinflammatory cytokines relative to sham-operated group, while taxifolin treatment effectively mitigated sepsis-induced inflammation in mouse lungs. Further investigation revealed that taxifolin suppressed the activation of the nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathway in cecal ligation and puncture-challenged mice by regulating the phosphorylation of p65 and IκBα. In conclusion, our study showed that taxifolin alleviated sepsis-induced acute lung injury via the inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells signaling pathway, suggesting the therapeutic potential of taxifolin in the treatment sepsis-induced acute lung injury.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
S Steven ◽  
J Helmstaedter ◽  
F Pawelke ◽  
K Filippou ◽  
K Frenies ◽  
...  

Abstract Objective Sepsis causes severe hypotension, accompanied by high mortality in the setting of septic shock. LEADER, SUSTAIN-6 and other clinical trials revealed cardioprotective and anti-inflammatory properties of GLP-1 analogs like Liraglutide (Lira). We already demonstrated improved survival by amelioration of disseminated intravasal coagulation (DIC) in lipopolysaccharide (LPS)-induced endotoxemia by inhibition of the GLP-1 degrading enzyme dipeptidylpeptidase-4 (DPP-4). With the present study we aim to investigate the mechanism of protective effects of the GLP-1 analog Lira and the DPP4 inhibitor Linagliptin (Lina) in the clinically relevant sepsis model cecal ligation and puncture (CLP). Methods C57/BL6j and endothelial cell-specific GLP-1 receptor knockout mice (Cdh5crexGLP-1rfl/flmice) were used and sepsis was induced by cecal ligation and puncture (CLP). DPP4 inhibitor (Lina, 5mg/kg/d; 3 days) and GLP-1 analog (Lira, 200μg/kg/d; 3 days) were applied subcutaneously. Aortic vascular function was tested by isometric tension recording. Aorta and heart tissue was used for Western blotting, dot blot and qRT-PCR. Endogenous GLP-1 (7–36 and 9–36) and insulin was determined by ELISA. Blood samples were collected for examination of cell count, oxidative stress and glucose levels. Results Body temperature was increased by CLP and normalized by Lina and Lira. Sham- and Lira- but not Lina-treated septic mice showed low blood glucose levels compared to healthy controls. Acetylcholine-induced (endothelium-dependent) vascular relaxation in aorta was impaired by CLP. This was accompanied by vascular inflammation and elevation of IL-6, iNOS, ICAM-1, and TNF-alpha mRNA levels in aortic tissue. Vascular, cardiac and whole blood oxidative stress were increased by CLP. Furthermore, we detected higher levels of IL-6, 3-nitrotyrosine (3-NT) and 4-hydroxynonenal (4-NHE) in plasma of CLP animals. Lina and Lira reduced oxidative stress and vascular inflammation, which was accompanied by improved endothelial function. In addition, CLP treatment in endothelial specific knockout mice of the GLP-1r strongly induced mortality compared to WT mice, with the effect being strongest in the Lira-treated group. Conclusion The present study demonstrates that Lina (DPP4 inhibitor) and the GLP-1 analog Lira ameliorate sepsis-induced endothelial dysfunction by reduction of vascular inflammation and oxidative stress. Clinical trials like LEADER and SUSTAIN-6 proved that GLP-1 analogs like Lira have cardioprotective effects in T2DM patients. The present study, performed in a clinically relevant model of polymicrobial sepsis, reveals that the known cardioprotective effects of GLP-1 might be translated to other diseases which affect the cardiovascular system like sepsis, underlining the potent anti-inflammatory effects of GLP-1 analogs.


Drug Research ◽  
2020 ◽  
Author(s):  
Tina Didari ◽  
Shokoufeh Hassani ◽  
Maryam Baeeri ◽  
Mona Navaei-Nigjeh ◽  
Mahban Rahimifard ◽  
...  

Abstract Aim of the study Sepsis has well-documented inflammatory effects on cardiovascular and blood cells. This study is designed to investigate potential anti-inflammatory effects of metformin on cardiac and blood cells 12 and 24 h following cecal ligation and puncture (CLP)-induced sepsis. Methods For the purpose of this study, 36 male Wistar rats were divided into six groups: two groups underwent CLP, two groups underwent CLP and received metformin, and two groups only received sham operations. 12 h later, 18 rats (half of rats in each of the three aforementioned groups) were sacrificed and cardiac and blood cells were harvested. Subsequently, 12 h later, the rest of the rats were euthanatized. In all harvested blood and cardiac cells, oxidative stress indicators, antioxidant properties, count of blood cells, neutrophil infiltration, percentage of weight loss and pathological assessment were conducted. Results In our experiment, metformin elevated antioxidant levels, improved function of blood cells and percentage of weight loss. Moreover, in the groups which received metformin, oxidative stress and neutrophil infiltration markers were decreased significantly. Moreover, pathological investigations of cardiac cell injury were reduced in the metformin group. Conclusions Our findings suggest that in CLP induced sepsis model, metformin can improve the function of blood and cardiac cells through alleviating inflammation, improvement of anti-inflammation properties, and enhancement of blood profile, and all these effects are more pronounced after 24 h in comparison with 12 h after induction of sepsis.


2007 ◽  
Vol 97 (1) ◽  
pp. 118-137 ◽  
Author(s):  
Scott Banta ◽  
Murali Vemula ◽  
Tadaaki Yokoyama ◽  
Arul Jayaraman ◽  
François Berthiaume ◽  
...  

Shock ◽  
2006 ◽  
Vol 25 (Supplement 1) ◽  
pp. 7-8
Author(s):  
AT Clark ◽  
KW McConnell ◽  
CR Hunt ◽  
TG Buchman ◽  
RS Hotchkiss ◽  
...  

2021 ◽  
pp. 1929787
Author(s):  
Mohammad A. Uddin ◽  
Mohammad S. Akhter ◽  
Khadeja-Tul Kubra ◽  
Nektarios Barabutis

1995 ◽  
Vol 182 (1) ◽  
pp. 267-272 ◽  
Author(s):  
T E Read ◽  
C Grunfeld ◽  
Z L Kumwenda ◽  
M C Calhoun ◽  
J P Kane ◽  
...  

Triglyceride-rich lipoproteins bind and inactive bacterial endotoxin in vitro and prevent death when given before a lethal dose of endotoxin in animals. However, lipoproteins have not yet been demonstrated to improve survival in polymicrobial gram-negative sepsis. We therefore tested the ability of triglyceride-rich lipoproteins to prevent death after cecal ligation and puncture (CLP) in rats. Animals were given bolus infusions of either chylomicrons (1 g triglyceride/kg per 4 h) or an equal volume of saline for 28 h after CLP. Chylomicron infusions significantly improved survival (measured at 96 h) compared with saline controls (80 vs 27%, P < or = 0.03). Chylomicron infusions also reduced serum levels of endotoxin, measured 90 min (26 +/- 3 vs 136 +/- 51 pg/ml, mean +/- SEM, P < or = 0.03) and 6 h (121 +/- 54 vs 1,026 +/- 459 pg/ml, P < or = 0.05) after CLP. The reduction in serum endotoxin correlated with a reduction in serum tumor necrosis factor, measured 6 h after CLP (0 +/- 0 vs 58 +/- 24 pg/ml, P < or = 0.03), suggesting that chylomicrons improve survival in this model by limiting macrophage exposure to endotoxin and thereby reducing secretion of inflammatory cytokines. Infusions of a synthetic triglyceride-rich lipid emulsion (Intralipid; KabiVitrum, Inc., Alameda, CA) (1 g triglyceride/kg) also significantly improved survival compared with saline controls (71 vs 27%, P < or = 0.03). These data demonstrate that triglyceride-rich lipoproteins can protect animals from lethal polymicrobial gram-negative sepsis.


Sign in / Sign up

Export Citation Format

Share Document