scholarly journals The Analysis of Angin Puting Beliung Risk Rate by Utilization of Remote Sensing and Geographic Information Systems in Semarang

Author(s):  
Adil Yusuf Fadillah ◽  
Muhammad Riza Nurdin

This study examines the risk rate of Angin Puting Beliung in Semarang of Central Java. The Angin Puting Beliung is a local designation for small-scale tornadoes that occur in Indonesia, originates from differences in pressure of a weather system, leads to strong winds. Between January 2014 and December 2018, the occurrence of Angin Puting Beliung in Semarang city of Central Java reached 91 times with a total financial loss of around IDR 852,500,000 (USD 60,000). High population densities and settlements without being followed by control of spatial use and land-use change make Semarang more at risk of being hit by a tornado. This study specifically aims to determine the level of physical, social, and economic vulnerability as well as to analyze the risk level of Angin Puting Beliung in Semarang city. The survey is used as the main method in this study. Samples were taken to represent the population namely land cover, slope, and land surface air temperature with data analysis using a weighted tiered quantitative method to answer the purpose of knowing the distribution of hazard and vulnerability areas and analysis of the results of mathematical calculations to determine the risk of Angin Puting Beliung. The results obtained show that Semarang city has a high hazard level of 28,502% which is mostly found in the southwest and northeast of Semarang. High levels of vulnerability are in the sub-districts of West Semarang, Mijen, Gunung Pati, and Tembalang. The risk level with a high class ranks the least, namely from other classes with a distribution in the sub-district of Tugu and Tembalang, accounted at 16.294%.

2015 ◽  
Vol 9 (6) ◽  
pp. 6661-6696
Author(s):  
K. Gisnås ◽  
S. Westermann ◽  
T. V. Schuler ◽  
K. Melvold ◽  
B. Etzelmüller

Abstract. The strong winds prevalent in high altitude and arctic environments heavily redistribute the snow cover, causing a small-scale pattern of highly variable snow depths. This has profound implications for the ground thermal regime, resulting in highly variable near-surface ground temperatures on the meter scale. Asymmetric snow distributions combined with the non-linear insulating effect of snow also mean that the spatial average ground temperature in a 1 km2 area can not necessarily be determined based on the average snow cover for that area. Land surface or permafrost models employing a coarsely classified average snow depth will therefore not yield a realistic representation of ground temperatures. In this study we employ statistically derived snow distributions within 1 km2 grid cells as input to a regional permafrost model in order to represent sub-grid variability of ground temperatures. This is shown to improve the representation of both the average and the total range of ground temperatures: the model results show that we reproduce observed sub-grid ground temperature variations of up to 6 °C, with 98 % of borehole observations within the modelled temperature range. Based on this more faithful representation of ground temperatures, we find the total permafrost area of mainland Norway to be nearly twice as large as what is modelled without a sub-grid approach.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Sara Bonetti ◽  
Zhongwang Wei ◽  
Dani Or

AbstractEarth system models use soil information to parameterize hard-to-measure soil hydraulic properties based on pedotransfer functions. However, current parameterizations rely on sample-scale information which often does not account for biologically-promoted soil structure and heterogeneities in natural landscapes, which may significantly alter infiltration-runoff and other exchange processes at larger scales. Here we propose a systematic framework to incorporate soil structure corrections into pedotransfer functions, informed by remote-sensing vegetation metrics and local soil texture, and use numerical simulations to investigate their effects on spatially distributed and areal averaged infiltration-runoff partitioning. We demonstrate that small scale soil structure features prominently alter the hydrologic response emerging at larger scales and that upscaled parameterizations must consider spatial correlations between vegetation and soil texture. The proposed framework allows the incorporation of hydrological effects of soil structure with appropriate scale considerations into contemporary pedotransfer functions used for land surface parameterization.


2007 ◽  
Vol 46 (10) ◽  
pp. 1587-1605 ◽  
Author(s):  
J-F. Miao ◽  
D. Chen ◽  
K. Borne

Abstract In this study, the performance of two advanced land surface models (LSMs; Noah LSM and Pleim–Xiu LSM) coupled with the fifth-generation Pennsylvania State University–National Center for Atmospheric Research Mesoscale Model (MM5), version 3.7.2, in simulating the near-surface air temperature in the greater Göteborg area in Sweden is evaluated and compared using the GÖTE2001 field campaign data. Further, the effects of different planetary boundary layer schemes [Eta and Medium-Range Forecast (MRF) PBLs] for Noah LSM and soil moisture initialization approaches for Pleim–Xiu LSM are investigated. The investigation focuses on the evaluation and comparison of diurnal cycle intensity and maximum and minimum temperatures, as well as the urban heat island during the daytime and nighttime under the clear-sky and cloudy/rainy weather conditions for different experimental schemes. The results indicate that 1) there is an evident difference between Noah LSM and Pleim–Xiu LSM in simulating the near-surface air temperature, especially in the modeled urban heat island; 2) there is no evident difference in the model performance between the Eta PBL and MRF PBL coupled with the Noah LSM; and 3) soil moisture initialization is of crucial importance for model performance in the Pleim–Xiu LSM. In addition, owing to the recent release of MM5, version 3.7.3, some experiments done with version 3.7.2 were repeated to reveal the effects of the modifications in the Noah LSM and Pleim–Xiu LSM. The modification to longwave radiation parameterizations in Noah LSM significantly improves model performance while the adjustment of emissivity, one of the vegetation properties, affects Pleim–Xiu LSM performance to a larger extent. The study suggests that improvements both in Noah LSM physics and in Pleim–Xiu LSM initialization of soil moisture and parameterization of vegetation properties are important.


2021 ◽  
Vol 56 (1-2) ◽  
pp. 635-650 ◽  
Author(s):  
Qingxiang Li ◽  
Wenbin Sun ◽  
Xiang Yun ◽  
Boyin Huang ◽  
Wenjie Dong ◽  
...  

2021 ◽  
Author(s):  
Koffi Dodji Noumonvi ◽  
Joshua L. Ratcliffe ◽  
Mats Öquist ◽  
Mats B. Nilsson ◽  
Matthias Peichl

<p>Northern peatlands cover a small fraction of the earth’s land surface, and yet they are one of the most important natural sources of atmospheric methane. With climate change causing rising temperatures, changes in water balance and increased growing season length, peatland contribution to atmospheric methane concentration is likely to increase, justifying the increased attention given to northern peatland methane dynamics. Northern peatlands often occur as heterogeneous complexes characterized by hydromorphologically distinct features from < 1 m² to tens of km², with differing physical, hydrological and chemical properties. The more commonly understood small-scale variation between hummocks, lawns and hollows has been well explored using chamber measurements. Single tower eddy covariance measurements, with a typical 95% flux footprint of < 0.5 km², have been used to assess the ecosystem scale methane exchange. However, how representative single tower flux measurements are of an entire mire complex is not well understood. To address this knowledge gap, the present study takes advantage of a network of four eddy covariance towers located less than 3 km apart at four mires within a typical boreal mire complex in northern Sweden. The variation of methane fluxes and its drivers between the four sites will be explored at different temporal scales, i.e. half-hourly, daily and at a growing-season scale.</p>


2014 ◽  
Vol 14 (5) ◽  
pp. 1059-1070 ◽  
Author(s):  
M. A. Picornell ◽  
J. Campins ◽  
A. Jansà

Abstract. Tropical-like cyclones rarely affect the Mediterranean region but they can produce strong winds and heavy precipitations. These warm-core cyclones, called MEDICANES (MEDIterranean hurriCANES), are small in size, develop over the sea and are infrequent. For these reasons, the detection and forecast of medicanes are a difficult task and many efforts have been devoted to identify them. The goals of this work are to contribute to a proper description of these structures and to develop some criteria to identify medicanes from numerical weather prediction (NWP) model outputs. To do that, existing methodologies for detecting, characterizating and tracking cyclones have been adapted to small-scale intense cyclonic perturbations. First, a mesocyclone detection and tracking algorithm has been modified to select intense cyclones. Next, the parameters that define the Hart's cyclone phase diagram are tuned and calculated to examine their thermal structure. Four well-known medicane events have been described from numerical simulation outputs of the European Centre for Medium-Range Weather Forecast (ECMWF) model. The predicted cyclones and their evolution have been validated against available observational data and numerical analyses from the literature.


2021 ◽  
Vol 6 (2) ◽  
pp. 59-69
Author(s):  
Husna Fauzia ◽  
◽  
Eka Cahyaningsih ◽  
Hery Hariyanto ◽  
Satya Nugraha ◽  
...  

Flooding is a catastrophic phenomenon that can occur due to various factors, such as uncontrolled landuse changes, climate change, and weather anomalies, and drainage infrastructure damage. The Bodri watershed in Kendal Regency is one of the watersheds in Central Java, which is categorized as critical based on Decree No.328/Menhut-II/2009. Some of the problems in the Bodri watershed include land use that is not suitable for its designation, flooding, erosion, and landslides. This study aims to conduct spatial modeling to create flood hazard maps and flood risk level maps in the Bodri watershed. The method used is hydrograph analysis, flood modeling, potential flood hazards, and flood risk levels. Analysis of the potential for flood hazards from the spatial modeling inundation map with the input of the flood peak return period of 2 years (Q2), 5 years (Q5), and 50 years (Q50). Vulnerability analysis based on land use maps of flood hazard areas. The distribution of flood-prone areas in the Bodri watershed is in Pidodo Kulon Village, Pidodo Wetan Village, and Bangunsari Village.


2022 ◽  
Author(s):  
Qing-Bin Lu

Abstract Time-series observations of global lower stratospheric temperature (GLST), global land surface air temperature (LSAT), global mean surface temperature (GMST), sea ice extent (SIE) and snow cover extent (SCE), together with observations reported in Paper I, combined with theoretical calculations of GLSTs and GMSTs, have provided strong evidence that ozone depletion and global climate changes are dominantly caused by human-made halogen-containing ozone-depleting substances (ODSs) and greenhouse gases (GHGs) respectively. Both GLST and SCE have become constant since the mid-1990s and GMST/LSAT has reached a peak since the mid-2000s, while regional continued warmings at the Arctic coasts (particularly Russia and Alaska) in winter and spring and at some areas of Antarctica are observed and can be well explained by a sea-ice-loss warming amplification mechanism. The calculated GMSTs by the parameter-free warming theory of halogenated GHGs show an excellent agreement with the observed GMSTs after the natural El Niño southern oscillation (ENSO) and volcanic effects are removed. These results provide a convincing mechanism of global climate change and will make profound changes in our understanding of atmospheric processes. This study also emphasizes the critical importance of continued international efforts in phasing out all anthropogenic halogenated ODSs and GHGs.


Author(s):  
Ngatindriatun Ngatindriatun ◽  
Hertiana Ikasari

Batik is known since 17th century. In 2009, UNESCO took batik as the world heritage. Likewise, Batik Semarang. Batik Semarang is unpopular than other batik’s products on Central Java. Their productivity is on small scale and only for environment surroundings. The small productivity causes the high price on their product selling. The aims of this research are to estimate the function of production and technical efficiency of batik Semarang. Sample is 67 owners of small scale batik Semarang industry. Analysis instrument is Stochastic Frontier Production Function. The measuring of production efficiency are material, support material, labor force, instruments, kerosene, firewood, and large of trade location. The result shows that free variable is found significant and have an appropriate signal. Other result shows that technical efficiency of batik Semarang industry is 88, 9%


Sign in / Sign up

Export Citation Format

Share Document