scholarly journals A Mathematical Model for Predicting the Performance of Liquid Desiccant Wheel

The liquid desiccant cooling system is found to be a good alternative of conventional air conditioning system for better control of both latent and sensible loads. The major component of a liquid desiccant cooling system is desiccant dehumidifier which controls the latent cooling load. In this paper a mathematical model for rotary type liquid desiccant dehumidifier commonly known as desiccant wheel has been presented. The desiccant wheel has a cylindrical shape with a number of identical narrow circular slots distributed uniformly over the rotor cross section. The slots are filled with a porous medium carrying the solution of liquid desiccant, to make the absorbing surface. The absorption and regeneration performance of the desiccant dehumidifier is discussed in this paper for different operating conditions. The wheel performance curves which help to determine the air outlet conditions and coefficient of performance (COP) of the system are drawn for a wide range of wheel thickness (0.06-0.6m), air mass flux (1-8 kg/m2 .s), and regeneration temperature (60- 85o C). A reduction of about 30% in outlet humidity ratio is observed with an increase in the wheel thickness from 0.06 to 0.2m. The computed results show that better supply air conditions can be obtained to provide human thermal comfort in the hot and humid climate with effectiveness of the system largely dependent on air flow rate, wheel thickness and humidity ratio of process air.

2021 ◽  
Author(s):  
Amira Abdelrasoul

The low-pressure membrane applications are considered to be the most effective and sustainable methods of addressing environmental problems in treating water and wastewater that meets or exceed stringent environmental standards. Nevertheless, membrane fouling is one of the primary operational concerns that is currently hindering a more widespread application of ultrafiltration (UF) with a variety of contaminants. Membrane fouling leads to higher operating costs, higher energy demand, reduced membrane life time, and increased cleaning frequency. As a consequence, an efficient and well-planned UF process is becoming a necessity for consistent and long-term monetary returns. Examining the source and mechanisms of foulant attachment to the membrane’s surface is critical when it comes to the research of membrane fouling and its potential practical implementation. A mathematical model was developed in this study in order to predict the amount of fouling based on an analysis of particle attachments. This model was developed using both homogeneous and heterogeneous membranes, with a uniform and non-uniform pore sizes for the UF of simulated latex effluent with a wide range of particle size distribution. The objective of this mathematical model was to effectively identify and address the common shortcomings of previous fouling models, and to account for the existing chemical attachments in membrane fouling. The mathematical model resulting from this study was capable of accurately predicting the mass of fouling retained by the membrane and the increase in transmembrane pressure (TMP). In addition, predictive models of fouling attachments were derived and now form an extensive set of mathematical models necessary for the prediction of membrane fouling at a given operating condition, as well as, the various membrane surface charges. Polycarbonate and Polysulfone flat membranes, with pore sizes of 0.05 μm and a molecular weight cut off of 60,000 respectively, were used in the experimental designs under a constant feed flow rate and a cross-flow mode in UF of the simulated latex paint effluent. The TMP estimated from the model agreed with the experimentally measured values at different operating conditions, mostly within 5.0 - 8.0 % error, and up to 13.0% error for the uniform, and non-uniform pore size membranes, respectively. Furthermore, different types of membranes with a variety of molecular weight cut-off (MWCO) values were tested so as to evaluate the accuracy of the models for a generalized application. In addition , a power consumption model, incorporating fouling attachment as well as chemical and physical factors in membrane fouling, was developed in order to ensure accurate prediction and scale-up. Innovative remediation techniques were likewise developed and applied in order to minimize membrane fouling, enhance the membrane performance, and save energy. Fouling remediation methodologies included the pre-treating of the latex effluent, so as to limit its fouling propensity by using different types of surfactants as cationic and anionic, in addition to the pH change. The antifouling properties of the membranes were improved through the implementation of the membrane pH treatment and anionic surfactant treatment. Increasing the ionic strength of latex effluent or enhancing the membrane surface hydrophilicity facilitated a significant increase in the cumulative permeate flux, a substantial decrease in the total mass of fouling, and a noticeable decrease in the specific power consumption.


2021 ◽  
Author(s):  
Amira Abdelrasoul

The low-pressure membrane applications are considered to be the most effective and sustainable methods of addressing environmental problems in treating water and wastewater that meets or exceed stringent environmental standards. Nevertheless, membrane fouling is one of the primary operational concerns that is currently hindering a more widespread application of ultrafiltration (UF) with a variety of contaminants. Membrane fouling leads to higher operating costs, higher energy demand, reduced membrane life time, and increased cleaning frequency. As a consequence, an efficient and well-planned UF process is becoming a necessity for consistent and long-term monetary returns. Examining the source and mechanisms of foulant attachment to the membrane’s surface is critical when it comes to the research of membrane fouling and its potential practical implementation. A mathematical model was developed in this study in order to predict the amount of fouling based on an analysis of particle attachments. This model was developed using both homogeneous and heterogeneous membranes, with a uniform and non-uniform pore sizes for the UF of simulated latex effluent with a wide range of particle size distribution. The objective of this mathematical model was to effectively identify and address the common shortcomings of previous fouling models, and to account for the existing chemical attachments in membrane fouling. The mathematical model resulting from this study was capable of accurately predicting the mass of fouling retained by the membrane and the increase in transmembrane pressure (TMP). In addition, predictive models of fouling attachments were derived and now form an extensive set of mathematical models necessary for the prediction of membrane fouling at a given operating condition, as well as, the various membrane surface charges. Polycarbonate and Polysulfone flat membranes, with pore sizes of 0.05 μm and a molecular weight cut off of 60,000 respectively, were used in the experimental designs under a constant feed flow rate and a cross-flow mode in UF of the simulated latex paint effluent. The TMP estimated from the model agreed with the experimentally measured values at different operating conditions, mostly within 5.0 - 8.0 % error, and up to 13.0% error for the uniform, and non-uniform pore size membranes, respectively. Furthermore, different types of membranes with a variety of molecular weight cut-off (MWCO) values were tested so as to evaluate the accuracy of the models for a generalized application. In addition , a power consumption model, incorporating fouling attachment as well as chemical and physical factors in membrane fouling, was developed in order to ensure accurate prediction and scale-up. Innovative remediation techniques were likewise developed and applied in order to minimize membrane fouling, enhance the membrane performance, and save energy. Fouling remediation methodologies included the pre-treating of the latex effluent, so as to limit its fouling propensity by using different types of surfactants as cationic and anionic, in addition to the pH change. The antifouling properties of the membranes were improved through the implementation of the membrane pH treatment and anionic surfactant treatment. Increasing the ionic strength of latex effluent or enhancing the membrane surface hydrophilicity facilitated a significant increase in the cumulative permeate flux, a substantial decrease in the total mass of fouling, and a noticeable decrease in the specific power consumption.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 200 ◽  
Author(s):  
Krzysztof Rajski ◽  
Jan Danielewicz ◽  
Ewa Brychcy

In the present work, the effects of different operating parameters on the performance of a gravity-assisted heat pipe-based indirect evaporative cooler (GAHP-based IEC) were investigated. The aim of the theoretical study is to evaluate accurately the cooling performance indicators, such as the coefficient of performance (COP), wet bulb effectiveness, and cooling capacity. To predict the effectiveness of the air cooler under a variety of conditions, the comprehensive calculation method was adopted. A mathematical model was developed to simulate numerically the heat and mass transfer processes. The mathematical model was validated adequately using experimental data from the literature. Based on the conducted numerical simulations, the most favorable ranges of operating conditions for the GAHP-based IEC were established. Moreover, the conducted studies could contribute to the further development of novel evaporative cooling systems employing gravity-assisted heat pipes as efficient equipment for transferring heat.


2016 ◽  
Vol 138 (3) ◽  
Author(s):  
Ahmed H. Abdel-Salam ◽  
Chris McNevin ◽  
Lisa Crofoot ◽  
Stephen J. Harrison ◽  
Carey J. Simonson

The field performance of a low-flow internally cooled/heated liquid desiccant air conditioning (LDAC) system is investigated in this paper. The quasi-steady performance (sensible and latent heat transfer rates, coefficient of performance (COP), and uncertainties) of the LDAC system is quantified under different ambient air conditions. A major contribution of this work is a direct comparison of the transient and quasi-steady performance of the LDAC system. This paper is the first to quantify the importance of transients and shows that, for the environmental and operating conditions in this paper, transients can be neglected when estimating the energy consumption of the LDAC system. Another major contribution of this work is the development and verification of a new method that quantifies (with acceptable uncertainties) the quasi-steady performance of a LDAC system from transient field data using average data.


Author(s):  
Jackson B. Marcinichen ◽  
John R. Thome ◽  
Raffaele L. Amalfi ◽  
Filippo Cataldo

Abstract Thermosyphon cooling systems represent the future of datacenter cooling, and electronics cooling in general, as they provide high thermal performance, reliability and energy efficiency, as well as capture the heat at high temperatures suitable for many heat reuse applications. On the other hand, the design of passive two-phase thermosyphons is extremely challenging because of the complex physics involved in the boiling and condensation processes; in particular, the most important challenge is to accurately predict the flow rate in the thermosyphon and thus the thermal performance. This paper presents an experimental validation to assess the predictive capabilities of JJ Cooling Innovation’s thermosyphon simulator against one independent data set that includes a wide range of operating conditions and system sizes, i.e. thermosyphon data for server-level cooling gathered at Nokia Bell Labs. Comparison between test data and simulated results show good agreement, confirming that the simulator accurately predicts heat transfer performance and pressure drops in each individual component of a thermosyphon cooling system (cold plate, riser, evaporator, downcomer (with no fitting parameters), and eventually a liquid accumulator) coupled with operational characteristics and flow regimes. In addition, the simulator is able to design a single loop thermosyphon (e.g. for cooling a single server’s processor), as shown in this study, but also able to model more complex cooling architectures, where many thermosyphons at server-level and rack-level have to operate in parallel (e.g. for cooling an entire server rack). This task will be performed as future work.


Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4045
Author(s):  
Van Vu Nguyen ◽  
Szabolcs Varga ◽  
Vaclav Dvorak

The paper presented a mathematical assessment of selected refrigerants for the ejector cooling purpose. R1234ze(e) and R1234yf are the well-known refrigerants of hydrofluoroolefins (HFOs), the fourth-generation halocarbon refrigerants. Nature working fluids, R600a and R290, and third-generation refrigerant of halocarbon (hydrofluorocarbon, HFC), R32 and R152a, were selected in the assessment. A detail mathematical model of the ejector, as well as other components of the cycle, was built. The results showed that the coefficient of performance (COP) of R1234ze(e) was significantly higher than R600a at the same operating conditions. R1234yf’s performance was compatible with R290, and both were about 5% less than the previous two. The results also indicated that R152a offered the best performance among the selected refrigerants, but due to the high value of global warming potential, it did not fulfill the requirements of the current European refrigerant regulations. On the other hand, R1234ze(e) was the most suitable working fluid for the ejector cooling technology, thanks to its overall performance.


2003 ◽  
Vol 2 (2) ◽  
Author(s):  
J. R. Camargo ◽  
C. D. Ebinuma ◽  
S. Cardoso

Air conditioning systems are responsible for increasing men's work efficiency as well for his comfort, mainly in the warm periods of the year. Currently, the most used system is the mechanical vapor compression system. However, in many cases, evaporative cooling system can be an economical alternative to replace the conventional system, under several conditions, or as a pre-cooler in the conventional systems. It leads to a reduction in the operational cost, comparing with systems using only mechanical refrigeration. Evaporative cooling operates using induced processes of heat and mass transfer, where water and air are the working fluids. It consists in water evaporation, induced by the passage of an air flow, thus decreasing the air temperature. This paper presents the basic principles of the evaporative cooling process for human thermal comfort, the principles of operation for the direct evaporative cooling system and the mathematical development of the equations of thermal exchanges, allowing the determination of the effectiveness of saturation. It also presents some results of experimental tests in a direct evaporative cooler that take place in the Air Conditioning Laboratory at the University of Taubaté Mechanical Engineering Department, and the experimental results are used to determinate the convective heat transfer coefficient and to compare with the mathematical model.


2021 ◽  
Author(s):  
Nuoa Lei ◽  
Eric Masanet

Abstract The onsite water use of data centers (DCs) is becoming an increasingly important consideration within the policy and energy analysis communities, but has heretofore been difficult to quantify in macro-level DC energy models due to lack of reported water usage effectiveness (WUE) values by DC operators. This work addresses this important knowledge gap by presenting thermodynamically-compatible power usage effectiveness (PUE) and WUE values for a wide range of U.S. DC archetypes and climate zones, using a physics-based model that is validated with real-world data. Results enable energy analysts to more accurately analyze the onsite energy and water use of DCs by size class, cooling system type, and climate zone under many different operating conditions including operational setpoints. Sensitivity analyses further identify the variables leading to best-achievable PUE and WUE values by climate zone and cooling system type—including operational set points, use of free cooling, and cooling tower equipment and operational factors—which can support DC water- and energy-efficiency policy initiatives. The consistent PUE and WUE values may also be used in future work to quantify the indirect water use of DCs occurring in electrical power generating systems.


Author(s):  
Danial Salimizad ◽  
Chris McNevin ◽  
Stephen Harrison

Liquid-desiccant (LD) dehumidification technology has been used to extract moisture from humid air while attempting to consume less electricity than traditional air-conditioning methods. An evaporative cooling tower (ECT) was used as a cooling device to reject the latent heat gained by the system to regenerate the desiccant solution. The performance of an ECT was evaluated both experimentally and through TRNSYS simulations to investigate optimal operating conditions. The ECT often operated in humid conditions which resulted in reduced heat rejection rates and ineffective operation. To improve performance, cooling water storage (CWS) was investigated as a way to reduce ECT usage during periods of higher ambient humidity. To undertake this study, the complete LD system, incorporating CWS, was modelled in TRNSYS for a range of typical operating conditions. The results indicated that operation of the CWS system reduced the electrical power consumption and increased the electrical coefficient of performance (COPE) of the liquid desiccant air conditioning unit system by up to 16%. The total cooling rate improved by up to 6%. Smaller gains in COPT and solar fraction were also found in the simulation results.


2021 ◽  
Author(s):  
John Kim ◽  
Raffaele L. Amalfi

Abstract Two-phase cooling systems based on the thermosyphon operating principle exhibit excellent heat transfer performance, reliability, and flexibility, therefore can be applied to overcome thermal challenges in a wide range of electronic cooling applications and deployment scenarios. However, extremely complex nature of two-phase flow physics involving flow patterns and phase transitions has been the major challenge for technology adoption in industry. This paper demonstrates a machine learning (ML) based model for evaluating the thermal performance and refrigerant mass flow rate, of a thermosyphon cooling system for telecom equipment. Unlike conventional laboratory approach that requires numerous sensors attached to a cooling system to capture their thermal performance, the new model requires a minimum number of sensors to monitor the health of a thermal management solution. Using the proposed model, a system control module can be further developed which could identify optimal operating parameters in real-time under dynamically changing heat load conditions and actively maintain safety and thermal requirements.


Sign in / Sign up

Export Citation Format

Share Document