scholarly journals Study of Catalytic Effect of Nanolayered Montmorillonite Organoclays in Epoxy Polymer

2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
T. P. Mohan ◽  
K. Kanny

This paper is about the study of catalytic effect of nanolayered montmorillonite- (MMT-) based organoclays (OCs) in epoxy polymer by directly monitoring their exothermic temperature versus time during curing. Untreated clays (UCs) of MMT were also filled in the epoxy polymer for comparative study. OCs and UCs were individually filled in epoxy polymer from 0 wt.% to 5 wt.%, and the curing characteristics were examined. The cure behavior of epoxy-OC composites changes as a function of OC concentration. Among the epoxy-OC systems, improved curing reaction was observed at 3 wt.% OC-filled epoxy composites. Addition of OC above 3 wt.% in epoxy reduces its catalytic effect due to presence of two types of cross-linking, namely, intergallery and extragallery cross-linking reactions. The curing behaviours of epoxy-UC composites were almost similar to those of pure epoxy polymer, and hence the results suggest that UC does not act as catalyst in epoxy polymer. The cured composite series was examined by studying their structure and morphology using X-ray diffraction (XRD), transmission electron microscopy (TEM) analysis, and the Fourier transform infrared (FTIR) spectroscopy.

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2623
Author(s):  
Monika Wójcik-Bania ◽  
Jakub Matusik

Polymer–clay mineral composites are an important class of materials with various applications in the industry. Despite interesting properties of polysiloxanes, such matrices were rarely used in combination with clay minerals. Thus, for the first time, a systematic study was designed to investigate the cross-linking efficiency of polysiloxane networks in the presence of 2 wt % of organo-montmorillonite. Montmorillonite (Mt) was intercalated with six quaternary ammonium salts of the cation structure [(CH3)2R’NR]+, where R = C12, C14, C16, and R’ = methyl or benzyl substituent. The intercalation efficiency was examined by X-ray diffraction, CHN elemental analysis, and Fourier transform infrared (FTIR) spectroscopy. Textural studies have shown that the application of freezing in liquid nitrogen and freeze-drying after the intercalation increases the specific surface area and the total pore volume of organo-Mt. The polymer matrix was a poly(methylhydrosiloxane) cross-linked with two linear vinylsiloxanes of different siloxane chain lengths between end functional groups. X-ray diffraction and transmission electron microscopy studies have shown that the increase in d-spacing of organo-Mt and the benzyl substituent influence the degree of nanofillers’ exfoliation in the nanocomposites. The increase in the degree of organo-Mt exfoliation reduces the efficiency of hydrosilylation reaction monitored by FTIR. This was due to physical hindrance induced by exfoliated Mt particles.


Biomolecules ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 38 ◽  
Author(s):  
Banzeer Ahsan Abbasi ◽  
Javed Iqbal ◽  
Riaz Ahmad ◽  
Layiq Zia ◽  
Sobia Kanwal ◽  
...  

This study attempts to obtain and test the bioactivities of leaf extracts from a medicinal plant, Geranium wallichianum (GW), when conjugated with zinc oxide nanoparticles (ZnONPs). The integrity of leaf extract-conjugated ZnONPs (GW-ZnONPs) was confirmed using various techniques, including Ultraviolet–visible spectroscopy, X-Ray Diffraction, Fourier Transform Infrared Spectroscopy, energy-dispersive spectra (EDS), scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy. The size of ZnONPs was approximately 18 nm, which was determined by TEM analysis. Additionally, the energy-dispersive spectra (EDS) revealed that NPs have zinc in its pure form. Bioactivities of GW-ZnONPs including antimicrobial potentials, cytotoxicity, antioxidative capacities, inhibition potentials against α-amylase, and protein kinases, as well as biocompatibility were intensively tested and confirmed. Altogether, the results revealed that GW-ZnONPs are non-toxic, biocompatible, and have considerable potential in biological applications.


2007 ◽  
Vol 336-338 ◽  
pp. 1676-1678
Author(s):  
Cheng Yun Ning ◽  
Ying Jun Wang ◽  
Xiao Feng Chen ◽  
Jian Dong Ye ◽  
Gang Wu ◽  
...  

In the present study, bioactive functional gradient coatings were prepared using net-energy controlled plasma spraying technology. The microstructure and phases of the bioactive functional gradient coating were examined by means of transmission electron microscope, scanning electron microscopy and X-ray diffraction. The results revealed that: (1) as-sprayed coatings contained a large amount of amorphous phases and some nano-sized HA crystals formed during rapid solidification, (2) surface of the coating was very rough with different-sized micropores, and the gradient layer was much denser which firmly bonded to the substrate without gaps and obvious interface between the coating and the substrate


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 195
Author(s):  
Snežana S. S. Nenadović ◽  
Ljiljana M. Kljajević ◽  
Marija M. Ivanović ◽  
Miljana M. Mirković ◽  
Nadežda Radmilović ◽  
...  

The present work was focused on doping of 1% and 5% both of Nd2O3 and Sm2O3 in geopolymer gels. One of the main goals was to determine the influence of the behavior of Nd and Sm as dopants and structural nanoparticles changes of the final geopolymer formed. It is shown that the disorder formed by alkali activation of metakaolin can accommodate the rare earth cations Nd3+ and Sm3+ into their aluminosilicate framework structure. The main geopolymerization product identified in gels is Al-rich (Na)-AS-H gel comprising Al and Si in tetrahedral coordination. Na+ ions were balancing the negative charge resulting from Al3+ in tetrahedral coordination. The changes in the structures of the final product (geopolymer/Nd2O3; Sm2O3), has been characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM) analysis with energy dispersive spectrometry (EDS). Nucleation at the seed surfaces leads to the formation of phase-separated gels from rare earth phase early in the reaction process. It is confirmed that Nd and Sm have been shown to form unstable hydroxides Nd(OH)3 and Sm(OH)3 that are in equilibrium with the corresponding oxides.


2021 ◽  
Author(s):  
Manikanta P ◽  
Hari Prasad B R ◽  
Sanjay B P ◽  
Sandeep S ◽  
Santhosh A S ◽  
...  

Abstract The work demonstrates the development of an electrochemical sensor for quantification of Chloramphenicol (CA) using pencil graphite electrode (PGE) modified with Gadolinium tungstate nano flakes and carbon nano fibers composite (PGE/GWNfs/CNFs). The composite was further characterized and confirmed by X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDS), Transmission electron microscopy (TEM) analysis. The prepared GWNfs/CNFs nano composite was fabricated by drop casting method to get PGE/GWNfs/CNFs working electrode. The modified electrode is then analyzed by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) methods for its electrochemical and electrocatalytic property. The electrochemical investigation of developed sensor shows enhanced activity towards electro-oxidation of CA. The DPV studies revealed high efficacy characteristics such as sensitivity in the range 0.03984 µA µM-1cm-2, selectivity, good linear range (5-50 μM), and low detection limit (0.4 μM). The study benchmarks the use of GWNfs/CNFs as an excellent transducer material in electrochemical sensing of CA in standard samples thus, it finds an efficient potential application in the analysis of CA in environment sample analysis.


2020 ◽  
pp. 096739112093205
Author(s):  
Maider Iturrondobeitia ◽  
Julen Ibarretxe ◽  
Pello Jimbert ◽  
Roberto Fernandez-Martínez

The objective of performing transmission electron microscopy (TEM) tomography (TEMT) on poly (lactic acid) (PLA)/clay samples is to characterize their 3D microstructure by obtaining the dispersion distribution and orientation of the dimensions of the clays. This information cannot be elucidated from a qualitative TEM analysis or from conventional characterization techniques such as X-ray diffraction. The nanocomposites are obtained by mixing PLA with Cloisite 20A and 30B at different extrusion shear rates which have been analyzed in 3D. Quantitative TEMT is performed to all the nanocomposites and the resulting 3D quantitative characterization (geometry of clay particles misalignment degree and distribution) is used for a more realistic comprehension of the mechanical behavior of the nanocomposites.


2013 ◽  
Vol 873 ◽  
pp. 164-167
Author(s):  
Xiao Ming Fu

ZrO2 nanoparticles with a diameter range of less than 10 nm are successfully synthesized with zirconium nitrate as zirconium source and stronger ammonia water as precipitant at 210 °C for 48 h via the easy hydrothermal method. The phase, the morphologies and optical absorption properties of the samples have been characterized and analyzed by X-ray diffraction (XRD), field-emission transmission electron microscopy (TEM) and ultraviolet-visible absorption spectroscopy (UV-VIS), respectively. XRD analysis shows that the phase of as obtained samples is ZrO2. TEM analysis confirms that using stronger ammonia water as precipitant instead of NaOH and the increase of the reaction temperature are in favor of the synthesis of ZrO2 nanoparticles. And UV-VIS measurements show that ZrO2 nanoparticles have a good optical absorption property.


2015 ◽  
Vol 35 (8) ◽  
pp. 773-784
Author(s):  
T.P. Mohan ◽  
Krishnan Kanny

Abstract The objective of this work was to find a possible engineering application for polypropylene (PP) by preparing fibers filled with nanoclay particles. Unfilled and nanoclay filled (0–5 wt%) PP fibers were continuously drawn and examined. The surface morphology and topographic studies of fibers were carried out using a scanning electron microscope (SEM). It was observed that unfilled PP fibers possess poor density distribution with the nonuniform diameter across the fiber length affecting structural integrity. However, PP fibers filled with ≥2 wt% nanoclay had shown improvement in structural integrity. The structure and morphology of fibers were examined by using X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis, and the result indicated good dispersion of nanolayers of clay in PP matrix with exfoliated nanocomposite structure up to 2 wt% nanoclay and above 2 wt% showing intercalated nanocomposite structure. Improved tensile, thermal and water barrier properties of nanoclay filled PP were also observed.


2009 ◽  
Vol 1178 ◽  
Author(s):  
Aswani Yella ◽  
Enrico Mugnaioli ◽  
Martin Panthoefer ◽  
Ute Kolb ◽  
Wolfgang Tremel

AbstractWe report here the synthesis of tin disulfide nanotubes by a vapour liquid solid growth using bismuth, a low melting metal, as a catalyst. The reaction was carried out in a single step process by heating SnS2 and bismuth in a horizontal tube furnace at 800oC. TEM analysis allowed proposing a plausible mechanism for the formation of SnS2 nanotubes. Pure material could be obtained by optimizing the reaction based on a product analysis using powder X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) combined with energy dispersive X-ray spectroscopy (EDX).


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Giordano T. Paganoto ◽  
Deise M. Santos ◽  
Tereza C. S. Evangelista ◽  
Marco C. C. Guimarães ◽  
Maria Tereza W. D. Carneiro ◽  
...  

This paper is consisted in the synthesis of platinum-based electrocatalysts supported on carbon (Vulcan XC-72) and investigation of the addition of gallium in their physicochemical and electrochemical properties toward ethanol oxidation reaction (EOR). PtGa/C electrocatalysts were prepared through thermal decomposition of polymeric precursor method at a temperature of 350°C. Six different compositions were homemade: Pt50Ga50/C, Pt60Ga40/C, Pt70Ga30/C, Pt80Ga20/C, Pt90Ga10/C, and Pt100/C. These electrocatalysts were electrochemically characterized by cyclic voltammetry (CV), chronoamperometry (CA), chronopotentiometry (CP), and electrochemical impedance spectroscopy (EIS) in the presence and absence of ethanol 1.0 mol L−1. Thermogravimetric analysis (TGA), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and transmission electron microscopy (TEM) were also carried out for a physicochemical characterization of those materials. XRD results showed the main peaks of face-centered cubic Pt. The particle sizes obtained from XRD and TEM analysis range from 7.2 nm to 12.9 nm. The CV results indicate behavior typical of Pt-based electrocatalysts in acid medium. The CV, EIS, and CA data reveal that the addition of up to 31% of gallium to the Pt highly improves catalytic activity on EOR response when compared to Pt100/C.


Sign in / Sign up

Export Citation Format

Share Document