scholarly journals HEAVY RAINFALL FORECAST OVER LUCKNOW IN SOUTHWEST MONSOON

MAUSAM ◽  
2021 ◽  
Vol 43 (1) ◽  
pp. 103-105
Author(s):  
R. LAL
Atmosphere ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 111 ◽  
Author(s):  
Chul-Min Ko ◽  
Yeong Yun Jeong ◽  
Young-Mi Lee ◽  
Byung-Sik Kim

This study aimed to enhance the accuracy of extreme rainfall forecast, using a machine learning technique for forecasting hydrological impact. In this study, machine learning with XGBoost technique was applied for correcting the quantitative precipitation forecast (QPF) provided by the Korea Meteorological Administration (KMA) to develop a hydrological quantitative precipitation forecast (HQPF) for flood inundation modeling. The performance of machine learning techniques for HQPF production was evaluated with a focus on two cases: one for heavy rainfall events in Seoul and the other for heavy rainfall accompanied by Typhoon Kong-rey (1825). This study calculated the well-known statistical metrics to compare the error derived from QPF-based rainfall and HQPF-based rainfall against the observational data from the four sites. For the heavy rainfall case in Seoul, the mean absolute errors (MAE) of the four sites, i.e., Nowon, Jungnang, Dobong, and Gangnam, were 18.6 mm/3 h, 19.4 mm/3 h, 48.7 mm/3 h, and 19.1 mm/3 h for QPF and 13.6 mm/3 h, 14.2 mm/3 h, 33.3 mm/3 h, and 12.0 mm/3 h for HQPF, respectively. These results clearly indicate that the machine learning technique is able to improve the forecasting performance for localized rainfall. In addition, the HQPF-based rainfall shows better performance in capturing the peak rainfall amount and spatial pattern. Therefore, it is considered that the HQPF can be helpful to improve the accuracy of intense rainfall forecast, which is subsequently beneficial for forecasting floods and their hydrological impacts.


2012 ◽  
Vol 69 (2) ◽  
pp. 521-537 ◽  
Author(s):  
Christopher A. Davis ◽  
Wen-Chau Lee

Abstract The authors analyze the mesoscale structure accompanying two multiday periods of heavy rainfall during the Southwest Monsoon Experiment and the Terrain-Induced Mesoscale Rainfall Experiment conducted over and near Taiwan during May and June 2008. Each period is about 5–6 days long with episodic heavy rainfall events within. These events are shown to correspond primarily to periods when well-defined frontal boundaries are established near the coast. The boundaries are typically 1 km deep or less and feature contrasts of virtual temperature of only 2°–3°C. Yet, owing to the extremely moist condition of the upstream conditionally unstable air, these boundaries appear to exert a profound influence on convection initiation or intensification near the coast. Furthermore, the boundaries, once established, are long lived, possibly reinforced through cool downdrafts and prolonged by the absence of diurnal heating over land in generally cloudy conditions. These boundaries are linked phenomenologically with coastal fronts that occur at higher latitudes.


Atmosphere ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 378 ◽  
Author(s):  
Channa Rodrigo ◽  
Sangil Kim ◽  
Il Jung

This study aimed to determine the predictability of the Weather Research and Forecasting (WRF) model with different model physics options to identify the best set of physics parameters for predicting heavy rainfall events during the southwest and northeast monsoon seasons. Two case studies were used for the evaluation: heavy precipitation during the southwest monsoon associated with the simultaneous onset of the monsoon, and a low pressure system over the southwest Bay of Bengal that produced heavy rain over most of the country, with heavy precipitation associated with the northeast monsoon associated with monsoon flow and easterly disturbances. The modeling results showed large variation in the rainfall estimated by the model using the various model physics schemes, but several corresponding rainfall simulations were produced with spatial distribution aligned with rainfall station data, although the amount was not estimated accurately. Moreover, the WRF model was able to capture the rainfall patterns of these events in Sri Lanka, suggesting that the model has potential for operational use in numerical weather prediction in Sri Lanka.


2018 ◽  
Vol 131 (4) ◽  
pp. 1035-1054 ◽  
Author(s):  
Devajyoti Dutta ◽  
A. Routray ◽  
D. Preveen Kumar ◽  
John P. George ◽  
Vivek Singh

2020 ◽  
Vol 12 (7) ◽  
pp. 1147
Author(s):  
Yanhui Xie ◽  
Min Chen ◽  
Jiancheng Shi ◽  
Shuiyong Fan ◽  
Jing He ◽  
...  

The Advanced Technology Microwave Sounder (ATMS) mounted on the Suomi National Polar-Orbiting Partnership (NPP) satellite can provide both temperature and humidity information for a weather prediction model. Based on the rapid-refresh multi-scale analysis and prediction system—short-term (RMAPS-ST), we investigated the impact of ATMS radiance data assimilation on strong rainfall forecasts. Two groups of experiments were conducted to forecast heavy precipitation over North China between 18 July and 20 July 2016. The initial conditions and forecast results from the two groups of experiments have been compared and evaluated against observations. In comparison with the first group of experiments that only assimilated conventional observations, some added value can be obtained for the initial conditions of temperature, humidity, and wind fields after assimilating ATMS radiance observations in the system. For the forecast results with the assimilation of ATMS radiances, the score skills of quantitative forecast rainfall have been improved when verified against the observed rainfall. The Heidke skill score (HSS) skills of 6-h accumulated precipitation in the 24-h forecasts were overall increased, more prominently so for the heavy rainfall above 25 mm in the 0–6 h of forecasts. Assimilating ATMS radiance data reduced the false alarm ratio of quantitative precipitation forecasting in the 0–12 h of the forecast range and thus improved the threat scores for the heavy rainfall storm. Furthermore, the assimilation of ATMS radiances improved the spatial distribution of hourly rainfall forecast with observations compared with that of the first group of experiments, and the mean absolute error was reduced in the 10-h lead time of forecasts. The inclusion of ATMS radiances provided more information for the vertical structure of features in the temperature and moisture profiles, which had an indirect positive impact on the forecasts of the heavy rainfall in the RMAPS-ST system. However, the deviation in the location of the heavy rainfall center requires future work.


2014 ◽  
Vol 142 (8) ◽  
pp. 2644-2664 ◽  
Author(s):  
Chung-Chieh Wang ◽  
Jason Chieh-Sheng Hsu ◽  
George Tai-Jen Chen ◽  
Dong-In Lee

Abstract This study is the second of a two-part series to investigate two rainfall episodes in the Hovmöller space near Taiwan during the eighth intensive observing period (IOP-8, 12–17 June 2008) of the Southwest Monsoon Experiment/Terrain-influenced Monsoon Rainfall Experiment (SoWMEX/TiMREX). The first episode moved eastward and the second westward, and both caused heavy rainfall in Taiwan. The goal of Part I was to better understand the mechanism and controlling factors for the organization and propagation of the episodes. Here in Part II, the detailed roles played by synoptic conditions and terrain effects are further examined. Three sensitivity tests (at 2.5-km grid spacing) are designed to include only the effects of synoptic evolution (SNP), and those from land–sea distribution–diurnal variations on top of a mean background with/without topography (DIU/DNT). As the benchmark, the control (CTL) experiment captures the 6-day event successfully and is validated in Part I. In SNP, the two episodes are reproduced with overall similarity to CTL and the observation, and this confirms that the general location/time of rainfall are mainly controlled by synoptic forcing in this case, in contrast to typical warm-season conditions in the central United States. Even so, diurnal effects can still exert discernible impacts and modulate local convective development in many instances, particularly an afternoon enhancement over terrain, and the averaged diurnal cycle in CTL over southeastern China resembles those in DIU/DNT rather than that in SNP (with no land). The steep topography of Taiwan is especially important for its rainfall distribution, including the heavy rainfall on 16 June through processes as postulated by Xu et al.


2005 ◽  
Vol 44 (6) ◽  
pp. 768-788 ◽  
Author(s):  
Qingnong Xiao ◽  
Ying-Hwa Kuo ◽  
Juanzhen Sun ◽  
Wen-Chau Lee ◽  
Eunha Lim ◽  
...  

Abstract In this paper, the impact of Doppler radar radial velocity on the prediction of a heavy rainfall event is examined. The three-dimensional variational data assimilation (3DVAR) system for use with the fifth-generation Pennsylvania State University–NCAR Mesoscale Model (MM5) is further developed to enable the assimilation of radial velocity observations. Doppler velocities from the Korean Jindo radar are assimilated into MM5 using the 3DVAR system for a heavy rainfall case that occurred on 10 June 2002. The results show that the assimilation of Doppler velocities has a positive impact on the short-range prediction of heavy rainfall. The dynamic balance between atmospheric wind and thermodynamic fields, based on the Richardson equation, is introduced to the 3DVAR system. Vertical velocity (w) increments are included in the 3DVAR system to enable the assimilation of the vertical velocity component of the Doppler radial velocity observation. The forecast of the hydrometeor variables of cloud water (qc) and rainwater (qr) is used in the 3DVAR background fields. The observation operator for Doppler radial velocity is developed and implemented within the 3DVAR system. A series of experiments, assimilating the Korean Jindo radar data for the 10 June 2002 heavy rainfall case, indicates that the scheme for Doppler velocity assimilation is stable and robust in a cycling mode making use of high-frequency radar data. The 3DVAR with assimilation of Doppler radial velocities is shown to improve the prediction of the rainband movement and intensity change. As a result, an improved skill for the short-range heavy rainfall forecast is obtained. The forecasts of other quantities, for example, winds, are also improved. Continuous assimilation with 3-h update cycles is important in producing an improved heavy rainfall forecast. Assimilation of Doppler radar radial velocities using the 3DVAR background fields from a cycling procedure produces skillful rainfall forecasts when verified against observations.


2007 ◽  
Vol 29 (2) ◽  
pp. 83-97
Author(s):  
Vu Thanh Hang ◽  
Kieu Thi Xin

According to Krishnamurti, improvements of physical parameterizations will mainly affect simulations for the tropics [10]. The study of William A. Gallus Jr. showed that the higher the model resolution and more detailed convective parameterizations, the better the skill in quantitative precipitation forecast (QPF) in general [16]. The quality of precipitation forecast is so sensitive to convective parameterization scheme (CPS) used in the model as well as model resolution. The fact shows that for high resolution regional model like H14-31 CPS based on low-level moisture convergence as Tiedtke did not give good heavy rainfall forecast in Vietnam. In this paper we used the scheme of Betts-Miller-Janjic (BMJ) based on the convective adjustment toward tropical observationally structures in reality instead of Tiedtke in Hl4-31. Statistical verification results and verification using CRA method of Hl4-31 of two CPSs for seperated cases and for three rain seasons (2003-2005) shows that heavy rainfall forecast of Hl4-31/BMJ is better than one of H14-31/TK for Vietnam-South China Sea. CRA verification also shows that it is possible to say that heavy rainfall forecast skill of l-I14-31/BMJ in tropics is nearly similar to the skill of LAPS of Australia.


Author(s):  
Giovanni Dolif ◽  
Andre Engelbrecht ◽  
Alessandro Jatobá ◽  
Antônio Dias ◽  
José Orlando Gomes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document