scholarly journals Sub-divisional summer monsoon rainfall over India in relation to low pressure systems over the Bay of Bengal and adjoining land regions during 1982-1999

MAUSAM ◽  
2021 ◽  
Vol 59 (3) ◽  
pp. 327-338
Author(s):  
M. MOHAPATRA

A study is undertaken to find out characteristic features of relationship of the low pressure system (LPS) over the Bay of Bengal and adjoining land regions with the rainfall over different meteorological sub-divisions of India during summer monsoon season (June-September). For this purpose, rainfall over 35 meteorological sub-divisions in India and LPS days over west central (WC) Bay, northwest (NW) Bay, northeast (NE) Bay, Bangladesh (BDS), Gangetic West Bengal (GWB), Orissa, north coastal Andhra Pradesh (NCAP), east Madhya Pradesh and Chattisgarh (EMPC) and Jharkhand (JKD) during different monsoon months and the season as a whole over a period of 18 years (1982-1999) are analysed. There is large month to month variation in the impact of the LPS on the sub-divisional monsoon rainfall over India. However, the results presented in the study including developed correlation maps may be helpful to predict 24 hours rainfall based on the location of the LPS and associated monsoon trough.   The frequent development and persistence of LPS over NW Bay are favourable for higher seasonal monsoon rainfall over east central India. The development and persistence of LPS over WC Bay adversely affect the seasonal rainfall over this region. On the other hand, the frequent development and persistence of LPS over WC Bay and its subsequent westward movement across NCAP are favourable for higher seasonal rainfall over the peninsular region excluding west coast. The seasonal rainfall over northwest India decreases with increase in LPS days over EMPC. The seasonal rainfall over west central India, northeast India and west coast are not significantly related with the number of LPS days over the regions under consideration.

MAUSAM ◽  
2021 ◽  
Vol 48 (3) ◽  
pp. 413-420
Author(s):  
D.A. MOOLEY

ABSTRACT. El Ninos which occurred during 1871-1990 are divided into two categories of events. The first category, EW, consists of the El Ninos in which the equatorial southeast (ESE) Pacific region (0-10° S; 80°W-180°W) experienced a Warn1ing phase as defined by suitable objective criteria, and the second category, E, consists of El Ninos in which the ESE Pacific region did not experience the warming phase. Sea surface temperature rise as well as anomaly over the Pacific region, summer monsoon rainfall over India and over its meteorological sub-divisions, in the categories EW and E are compared. Area-averaged rainfall of India for the summer monsoon season and for each of the months July and September are significantly (at 0.1 percent level) lower in EW events in comparison to those in E events. The summer monsoon rainfall of each of the 12 sub-divisions, from northwest and central India constituting about 50 per cent of the Indian plains, is significantly lower in EW events than that in E events, the highest rainfall deficiency in EW events being in the westernmost sub-divisions, i.e., West Rajasthan and Saurashtra-Kutch. Possible causes for the same have also been discussed.    


2010 ◽  
Vol 23 (19) ◽  
pp. 5163-5174 ◽  
Author(s):  
Suryachandra A. Rao ◽  
Hemantkumar S. Chaudhari ◽  
Samir Pokhrel ◽  
B. N. Goswami

Abstract While many of the previous positive Indian Ocean dipole (IOD) years were associated with above (below)-normal monsoon rainfall over central (southern) India during summer monsoon months [June–September (JJAS)], the IOD event in 2008 is associated with below (above)-normal rainfall in many parts of central (southern peninsular) India. Because understanding such regional organization is a key for success in regional prediction, using different datasets and atmospheric model simulations, the reasons for this abnormal behavior of the monsoon in 2008 are explored. Compared to normal positive IOD events, sea surface temperature (SST) and rainfall in the southern tropical Indian Ocean (STIO) in JJAS 2008 were abnormally high. Downwelling Rossby waves and oceanic heat advection played an important role in warming SST abnormally in the STIO. It was also found that the combined influence of a linear warming trend in the tropical Indian Ocean and warming associated with the IOD have resulted in abnormal warming of the STIO. This abnormal SST warming resulted in enhancement of convection in the southwest tropical Indian Ocean and forced anticyclonic circulation anomalies over the Bay of Bengal and central India, leading to suppressed rainfall over this region in JJAS 2008. The above mechanism is tested by conducting several model sensitivity experiments with an atmospheric general circulation model (AGCM). These experiments confirmed that the subsidence over central India and the Bay of Bengal was forced mainly by the anomalous warming in the STIO region driven by coupled ocean–atmosphere processes. This study provides the first evidence of combined Indian Ocean warming, associated with global warming, and IOD-related warming influence on Indian summer monsoon rainfall. The combined influence may force below-normal rainfall over central India by inducing strong convection in the STIO region. The conventional seesaw in convection between the Indian subcontinent and the eastern equatorial Indian Ocean may shift to the central equatorial Indian Ocean and the Bay of Bengal if the central Indian Ocean consistently warms in the global warming scenario.


MAUSAM ◽  
2022 ◽  
Vol 53 (2) ◽  
pp. 177-186
Author(s):  
S. K. JADHAV

In the present paper performance of the monthly sub-divisional summer monsoon rainfall is studied in association with the position of the Low Pressure System (LPS) over the Indian region. Existence of the LPS over a particular location increases the rainfall activities in certain parts of the country while decreases in some other parts. For this study, the Indian region (5°-35° N and 60° -100° E) is divided into 5°  Lat. ´ 5° Long. grids. The duration of LPS is taken in terms of LPS days with respect to the location of LPS in a particular grid. Monthly total number of LPS days in each of the grids are computed during the summer monsoon season, June to September for the period 1891 – 1990. Maximum number of LPS days (more than half of the total) are observed in the latitude belt between 20°-25°N. The percentages of total LPS days in this area are higher in July and August which are peak monsoon months as compared to June and September. When there is a LPS are in the area 20°-25° N and 80°-90° E, there is significant increase in the rainfall activities in the sub-divisions along mean monsoon trough while northeast India and southeast peninsular India experience significant decrease in rainfall in the months of July and August. Owing to the movement of LPS from east to west through central India, most parts of the country, excluding northeast India and south peninsular India get good rainfall activity. Correlation coefficients between monthly LPS days over the different grids and monthly sub-divisional rainfall are computed to study the relationships. The performance of sub-divisional rainfall mostly related with the occurrence of LPS in certain grid- locations. The correlation field maps may give some useful information about rainfall performance due to LPS in a particular grid locations.


Water ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 959
Author(s):  
Benjamin Clark ◽  
Ruth DeFries ◽  
Jagdish Krishnaswamy

As part of its nationally determined contributions as well as national forest policy goals, India plans to boost tree cover to 33% of its land area. Land currently under other uses will require tree-plantations or reforestation to achieve this goal. This paper examines the effects of converting cropland to tree or forest cover in the Central India Highlands (CIH). The paper examines the impact of increased forest cover on groundwater infiltration and recharge, which are essential for sustainable Rabi (winter, non-monsoon) season irrigation and agricultural production. Field measurements of saturated hydraulic conductivity (Kfs) linked to hydrological modeling estimate increased forest cover impact on the CIH hydrology. Kfs tests in 118 sites demonstrate a significant land cover effect, with forest cover having a higher Kfs of 20.2 mm hr−1 than croplands (6.7mm hr−1). The spatial processes in hydrology (SPHY) model simulated forest cover from 2% to 75% and showed that each basin reacts differently, depending on the amount of agriculture under paddy. Paddy agriculture can compensate for low infiltration through increased depression storage, allowing for continuous infiltration and groundwater recharge. Expanding forest cover to 33% in the CIH would reduce groundwater recharge by 7.94 mm (−1%) when converting the average cropland and increase it by 15.38 mm (3%) if reforestation is conducted on non-paddy agriculture. Intermediate forest cover shows however shows potential for increase in net benefits.


Author(s):  
Vimal Mishra ◽  
Saran Aadhar ◽  
Shanti Shwarup Mahto

AbstractFlash droughts cause rapid depletion in root-zone soil moisture and severely affect crop health and irrigation water demands. However, their occurrence and impacts in the current and future climate in India remain unknown. Here we use observations and model simulations from the large ensemble of Community Earth System Model to quantify the risk of flash droughts in India. Root-zone soil moisture simulations conducted using Variable Infiltration Capacity model show that flash droughts predominantly occur during the summer monsoon season (June–September) and driven by the intraseasonal variability of monsoon rainfall. Positive temperature anomalies during the monsoon break rapidly deplete soil moisture, which is further exacerbated by the land-atmospheric feedback. The worst flash drought in the observed (1951–2016) climate occurred in 1979, affecting more than 40% of the country. The frequency of concurrent hot and dry extremes is projected to rise by about five-fold, causing approximately seven-fold increase in flash droughts like 1979 by the end of the 21st century. The increased risk of flash droughts in the future is attributed to intraseasonal variability of the summer monsoon rainfall and anthropogenic warming, which can have deleterious implications for crop production, irrigation demands, and groundwater abstraction in India.


2016 ◽  
Author(s):  
Imran A. Girach ◽  
Narendra Ojha ◽  
Prabha R. Nair ◽  
Andrea Pozzer ◽  
Yogesh K. Tiwari ◽  
...  

Abstract. We present ship-borne measurements of surface ozone, carbon monoxide and methane over the Bay of Bengal (BoB), the first time such measurements have been taken during the summer monsoon season, as a part of the Continental Tropical Convergence Zone (CTCZ) experiment during 2009. O3, CO, and CH4 mixing ratios exhibited significant spatial and temporal variability in the ranges of 8–54 nmol mol−1, 50–200 nmol mol−1, and 1.57–2.15 µmol mol−1, with means of 29.7 ± 6.8 nmol mol−1, 96 ± 25 nmol mol−1, and 1.83 ± 0.14 µmol mol−1, respectively. The average mixing ratios of trace gases over northern BoB (O3: 30 ± 7 nmol mol−1, CO: 95 ± 25 nmol mol−1, CH4: 1.86 ± 0.12 µmol mol−1), in airmasses from northern or central India, did not differ much from those over central BoB (O3: 27 ± 5 nmol mol−1, CO: 101 ± 27 nmol mol−1, CH4: 1.72 ± 0.14 µmol mol−1), in airmasses from southern India. Spatial variability is observed to be most significant for CH4. The ship-based observations, in conjunction with backward air trajectories and ground-based measurements over the Indian region, are analyzed to estimate a net ozone production of 1.5–4 nmol mol−1 day−1 in the outflow. Ozone mixing ratios over the BoB showed large reductions (by ~ 20 nmol mol−1) during four rainfall events. Temporal changes in the meteorological parameters, in conjunction with ozone vertical profiles, indicate that these low ozone events are associated with downdrafts of free-tropospheric ozone-poor airmasses. While the observed variations in O3 and CO are successfully reproduced using the Weather Research and Forecasting model with Chemistry (WRF-Chem), this model overestimates mean concentrations by about 20 %, generally overestimating O3 mixing ratios during the rainfall events. Analysis of the chemical tendencies from model simulations for a low-O3 event on August 10, 2009, captured successfully by the model, shows the key role of horizontal advection in rapidly transporting ozone-rich airmasses across the BoB. Our study fills a gap in the availability of trace gas measurements over the BoB, and when combined with data from previous campaigns, reveals large seasonal amplitude (~ 39 and ~ 207 nmol mol−1 for O3 and CO, respectively) over the northern BoB.


2021 ◽  
Author(s):  
Jayesh Phadtare ◽  
Jennifer Fletcher ◽  
Andrew Ross ◽  
Andy Turner ◽  
Thorwald Stein ◽  
...  

<p>Precipitation distribution around an orographic barrier is controlled by the Froude Number (Fr) of the impinging flow. Fr is essentially a ratio of kinetic energy and stratification of winds around the orography. For Fr > 1 (Fr <1), the flow is unblocked (blocked) and precipitation occurs over the mountain peaks and the lee region (upwind region). While idealized modelling studies have robustly established this relationship, its widespread real-world application is hampered by the dearth of relevant observations. Nevertheless, the data collected in the field campaigns give us an opportunity to explore this relationship and provide a testbed for numerical models. A realistic distribution of precipitation over a mountainous region in these models is necessary for flash-flood and landslide forecasting. The Western Ghats region is a classic example where the orographically induced precipitation leads to floods and landslides during the summer monsoon season. In the recent INCOMPASS field campaign, it was shown that the precipitation over the west coast of India occurred in alternate offshore and onshore phases. The Western Ghats received precipitation predominantly during the onshore phase which was characterized by a stronger westerly flow. Here, using the radiosonde data from a station over the Indian west coast and IMERG precipitation product, we show that climatologically, these phases can be mapped over an Fr-based classification of the monsoonal westerly flow. Classifying the flow as 'High Fr' (Fr >1), 'Moderate Fr' ( 0.5 < Fr ≤ 1) and 'Low Fr' ( Fr ≤ 0.5 ) gives three topographical modes of precipitation -- 'Orographic', 'Coastal' and 'Offshore', respectively.  Moreover, these modes are not sensitive to the choice of radiosonde station over the west coast.</p>


Sign in / Sign up

Export Citation Format

Share Document