scholarly journals Sunshine duration climatology and trends in association with other climatic factors over India for 1970-2006

MAUSAM ◽  
2021 ◽  
Vol 60 (4) ◽  
pp. 437-454
Author(s):  
A. K. JASWAL

Changes in sunshine duration in association with total cloud amount, rainy days and good visibility days over India were examined for 1970-2006. Climatologically, annual total sunshine duration over west Rajasthan and adjoining Gujarat is more than 3100 hours which is ideal for harnessing solar energy over these regions. The trend analysis indicates significant decrease in sunshine duration over the country for all months (except June) and the maximum decrease has taken place in January (-0.44 hour/decade) followed by December (-0.39 hour/decade). Seasonally, decline in sunshine hours is highest in winter and post monsoon (4% per decade) and lowest in monsoon (3% per decade). Decadal variations indicate maximum decrease in sunshine over the Indo-Gangetic plains and south peninsula during 1990-1999. Spatially, the decreasing trends in sunshine hours are highest in Indo-Gangetic plains and south peninsula while regions over Rajasthan and Gujarat have lowest decrease. Out of 40 stations under study, the maximum decrease in sunshine has occurred at New Delhi (winter at 13% per decade and post monsoon at 10% per decade) and Varanasi (summer and monsoon at 7% per decade). Correlation analysis of sunshine duration with total cloud amount, rainy days and good visibility days indicates regional and seasonal variations in factors explaining the long term trends in sunshine duration over the country.

Atmosphere ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 26
Author(s):  
Weiwei Zhu ◽  
Bingfang Wu ◽  
Nana Yan ◽  
Zonghan Ma ◽  
Linjiang Wang ◽  
...  

Sunshine duration is an important indicator of the amount of solar radiation received in a region and an important input parameter for the study of atmospheric energy balance, climate change, ecosystem evolution, and social sustainability. Currently, extrapolation and interpolation of data from meteorological stations are the most common methods used to calculate sunshine duration on a regional scale. However, it is difficult to obtain high precision sunshine duration in areas lacking ground observation or where sunshine duration is highly heterogeneous on the ground. In this paper, a new method is proposed to estimate sunshine duration with hourly total cloud amount (CTA) data from sunrise to sunset derived from the Fengyun-2G geostationary meteorological satellite (FY-2G). This method constructs a new index known as daytime mean total cloud coverage amount and provides quadratic equations relating daytime mean total cloud coverage amount to relative sunshine duration in different seasons. The method was validated with ground observation data for 2016 from 18 meteorological stations in the Three-River Headwaters Region of Qinghai Province, China. For individual stations, the coefficient of determination (R2) between estimated and measured sunshine was at least 0.894, the RMSE (root mean square error) was 0.977 h/day or less, the MAE (mean absolute error) was 0.824 h/day or less, the RE (relative error) was 0.150 or lower, and the value of d was 0.963 or greater, which validated that the proposed method can effectively predict daily sunshine duration. These equations can also provide higher precision estimates of regional-scale sunshine duration. This was demonstrated by comparing, for the entire study region, the spatial distribution of sunshine duration estimated from season-based equations with results from three different interpolation methods based on ground observations. Overall, the study confirms that total cloud amount measures from a geostationary satellite can be used to successfully estimate sunshine duration.


2005 ◽  
Vol 23 (7) ◽  
pp. 2425-2432 ◽  
Author(s):  
F. Liang ◽  
X. A. Xia

Abstract. Long-term trends in downwelling solar irradiance and associated climatic factors over China are studied in the paper. Decreasing trends in global and direct radiation are observed over much of China. The largest decrease occurs in South and East China (east of about 100° E and south of about 40° N). The spatial pattern of observed trends in diffuse irradiance is complex and inhomogeneous. An intriguing aspect of trends in global and direct irradiance is the rather abrupt decrease in annual and seasonal mean values from 1978 onward. The decreasing trends in solar radiation in China did not persist into the 1990s. The spatial and temporal patterns of trends in sunshine duration are consistent with that of global and direct irradiance. A decreasing trend in rainy days is observed over much of China, which is in agreement with the secular trend in cloud amount. The fact that trends in cloud amount and solar radiation are quite similar suggests that the cloud amount is not the primary cause for the decrease in solar radiation. Visibility in the eastern part of China has deteriorated heavily as a result of the rapid increase in aerosol loading. The statistical analysis showed that atmospheric transmission under clear conditions decreased rapidly. These facts suggest that the rapid increase in aerosol loading should be one of the principle causes for the decrease in solar radiation. The observed diurnal temperature range decreases remarkably in China, which is closely related to the increase in aerosols. The effects of anthropogenic air pollutants on climate should be further studied and included in the simulation of climate and projection of climate scenario. Keywords. Atmospheric composition and structure (Aerosol and particles; General or miscellaneous) – Meteorology and atmospheric dynamics (Radiative processes)


Author(s):  
Sandra Jaworeck ◽  
Peter Kriwy

The positive impact of sunshine on self-rated health is well known. For the first time, the relationship between sunshine and self-rated health is examined in the context of latitude lines in international comparison. The further people live from the equator, the lower sun exposure (UVB exposure) and the more often they experience a vitamin D deficiency. UVB exposure decreases with degrees of latitudinal lines, and in addition to that, sunshine duration is shorter in northern countries. In order to consider the connection, sunshine duration and degree of latitude lines were manually enriched from the German Meteorological Service (Deutscher Wetterdienst) to the International Social Survey Programs (2011): Health and Health Care and analyzed with a logistic multilevel model, as well as the inclusion of sunshine duration as a mediator. If sunshine hours, as well as latitude lines, are considered separately in models, both show a statistically significant effect. Together in one model, the sunshine hours lose their relationship and additionally there is no mediation. This suggests that the location of the region is the decisive component when considering self-rated health. Furthermore, an interaction between age and sunshine hours as well as latitude lines is also shown.


1998 ◽  
Vol 16 (3) ◽  
pp. 331-341 ◽  
Author(s):  
J. Massons ◽  
D. Domingo ◽  
J. Lorente

Abstract. A cloud-detection method was used to retrieve cloudy pixels from Meteosat images. High spatial resolution (one pixel), monthly averaged cloud-cover distribution was obtained for a 1-year period. The seasonal cycle of cloud amount was analyzed. Cloud parameters obtained include the total cloud amount and the percentage of occurrence of clouds at three altitudes. Hourly variations of cloud cover are also analyzed. Cloud properties determined are coherent with those obtained in previous studies.Key words. Cloud cover · Meteosat


2002 ◽  
Vol 82 (3) ◽  
pp. 499-506 ◽  
Author(s):  
Zakaria M Sawan ◽  
Louis I Hanna ◽  
Willis L McCuistion

The cotton plant (Gossypium spp.) is sensitive to numerous environmental factors. This study was aimed at predicting effects of climatic factors grouped into convenient intervals (in days) on cotton flower and boll production compared with daily observations. Two uniformity field trials using the cotton (G. barbadense L.) cv. Giza 75 were conducted in 1992 and 1993 at the Agricultural Research Center, Giza, Egypt. Randomly chosen plants were used to record daily numbers of flowers and bolls during the reproductive stage (60 days). During this period, daily air temperature, temperature magnitude, evaporation, surface soil temperature, sunshine duration, humidity, and wind speed were recorded. Data, grouped into intervals of 2, 3, 4, 5, 6, and 10 d, were correlated with cotton production variables using regression analysis. Evaporation was found to be the most important climatic variable affecting flower and boll production, followed by humidity and sunshine duration. The least important variables were surface soil temperature at 0600 and minimum air temperature. The 5-d interval was found to provide the best correlation with yield parameters. Applying appropriate cultural practices that minimize the deleterious effects of evaporation and humidity could lead to an important improvement in cotton yield in Egypt. Key words: Cotton, flower production, boll production, boll retention


2004 ◽  
Vol 39 ◽  
pp. 181-187 ◽  
Author(s):  
Qin Dahe ◽  
Xiao Cunde ◽  
Ian Allison ◽  
Bian Lingen ◽  
Rod Stephenson ◽  
...  

AbstractThe net surface snow accumulation on the Antarctic ice sheet is determined by a combination of precipitation, sublimation and wind redistribution. We present a 1 year record of hourly snow-height measurements that shows its seasonal variability. The measurements were made with an ultrasonic sensor mounted on an automatic weather station (AWS) installed at LGB69, Princess Elizabeth Land, Antarctica (70.835˚S, 77.075˚E; 1850 ma.s.l.). The average accumulation at this site is approximately 0.70 m snow a–1. Throughout the winter, between April and September, there was little change in surface snow height. The strongest accumulation occurred during the period October–March, with four episodic increases occurring during 2002. These episodic events coincided with obvious humidity ‘pulses’ and decreases of incoming solar radiation as recorded by the AWS. Observations of the total cloud amount at Davis station, 160 km north-northeast of LGB69, showed good correlation with major accumulation events recorded at LGB69. There was an obvious anticorrelation between the lowest cloud height at Davis and the daily accumulation rate at LGB69. Although there was no correlation over the total year between wind speed and accumulation at LGB69, large individual accumulation events are associated with episodes of strong wind. Strong accumulation events at LGB69 are associated with major storms in the region and inland transport of moist air masses from the coast.


2008 ◽  
Vol 8 (4) ◽  
pp. 13479-13505 ◽  
Author(s):  
N. H. Schade ◽  
A. Macke ◽  
H. Sandmann ◽  
C. Stick

Abstract. The detection of cloudiness is investigated by means of partial and total cloud amount estimations from pyrgeometer radiation measurements and all-sky imager observations. The measurements have been performed in Westerland, a seaside resort on the North Sea island of Sylt, Germany, during summer 2005. An improvement to previous studies on this subject results from the fact that for the first time partial cloud amount (PCA), defined as total cloud amounts without high clouds, calculations from longwave downward radiation (LDR) according to the APCADA-Algorithm (Dürr and Philipona, 2004) are validated against both human observations from the German Weather Service DWD at the nearby airport of Sylt and digital all-sky imaging. Differences between the resulting total cloud amounts (TCA's), defined as total cloud amount for all-cloud situations, derived from the camera images and from human observations are within ±1 octa in 72% and within ±2 octa in 85% of the cases. Compared to human observations PCA measurements according to APCADA underestimate the observed cloud cover in 47% of all cases and the differences are within ±1 octa in 60% and ±2 octa in 74% of all cases. Since high cirrus clouds can not be derived from LDR, separate comparisons for all cases without high clouds have been performed showing an agreement within ±1(2) octa in 73(90)% for PCA and also for camera derived TCA. For this coastal mid-latitude site under investigation we find similar though slightly smaller agreements to human observations as reported in Dürr and Philipona (2004). Though limited to day-time the cloud cover retrievals from the sky imager are not much affected by cirrus clouds and provide a more reliable cloud climatology for all-cloud conditions than APCADA.


2021 ◽  
pp. 1-62
Author(s):  
William B. Rossow ◽  
Kenneth R. Knapp ◽  
Alisa H Young

AbstractISCCP continues to quantify the global distribution and diurnal-to-interannual variations of cloud properties in a revised version. This paper summarizes assessments of the previous version, describes refinements of the analysis and enhanced features of the product design, discusses the few notable changes in the results, and illustrates the long-term variations of global mean cloud properties and differing high cloud changes associated with ENSO. The new product design includes a global, pixel-level product on a 0.1°?grid, all other gridded products at 1.0°-equivalent equal-area, separate-satellite products with ancillary data for regional studies, more detailed, embedded quality information, and all gridded products in netCDF format. All the data products including all input data), expanded documentation, the processing code and an Operations Guide are available online. Notable changes are: (1) a lowered ice-liquid temperature threshold, (2) a treatment of the radiative effects of aerosols and surface temperature inversions, (3) refined specification of the assumed cloud microphysics, and (4) interpolation of the main daytime cloud information overnight. The changes very slightly increase the global monthly mean cloud amount with a little more high and a little less middle and low cloud. Over the whole period, total cloud amount slowly decreases caused by decreases in cumulus/altocumulus; consequently, average cloud top temperature and optical thickness have increased. The diurnal and seasonal cloud variations are very similar to earlier versions. Analysis of the whole record shows that high cloud variations, but not low clouds, exhibit different patterns in different ENSO events.


Sign in / Sign up

Export Citation Format

Share Document