scholarly journals Characterization of climatic parameters in the perspective of irrigated agriculture in Uttar Kannada district of Karnataka, India

MAUSAM ◽  
2021 ◽  
Vol 71 (2) ◽  
pp. 299-314
Author(s):  
YALLURKAR SHRIDHAR ◽  
NAYAK SANDEEP ◽  
NANDAGIRI LAKSHMAN

A rainfall and potential evapotranspiration characteristics together determine the agro-meteorological regime of a region and influences decision concerning the magnitudes and timing of irrigation application.  In the present study, historical rainfall and climate data pertaining to the study area, Uttar Kannada district, Karnataka, was analyzed with a view to characterizing irrigation water requirements. In addition to rainfall input, an important aspect of the water balance model is the crop evapotranspiration (ETcrop), which is the main factor in determining the irrigation schedule. ETcrop could be estimated by reference evapotranspiration (ET0) and crop coefficient. Atmospheric demand for water is represented by ‘potential evapotranspiration’ (PET) and calculated from climatic variables which is crucial for irrigation planning. It has been reported that the Penman-Monteith method gives more consistently correct ET0 estimates to other ET0 methods. While recognizing the importance of both rainfall and PET, an effective measure is known as the ‘Moisture Availability Index’ (MAI), which is computed as the ratio of 75% dependable rainfall and potential evapotranspiration. An MAI value of 1.00 indicates that dependable precipitation is equal to potential evapotranspiration. An MAI value of 0.33 or less for one month during the crop growing season is considered to be a signal of water deficit resulting reduction in crop yield. The findings of this study on MAI are used to decide the selection of the sowing period of crops so as to avoid water stress during the critical harvesting period.

2020 ◽  
Author(s):  
Francesco Morari ◽  
Ahmed Harb Rabia ◽  
Stefano Lo Presti ◽  
Stefano Gobbo ◽  
George Vellidis

<p>Irrigation scheduling is one of the main factors that affect the crop ability to resist stress symptoms in addition to affecting directly the final yield. In the last decade, many remote sensing methods have been developed to help in scheduling irrigation with higher precision. Some of these methods estimate irrigation needs indirectly such as those using normalized difference vegetation index (NDVI) or crop coefficient curve, and other methods that directly calculate Evapotranspiration (ET) through satellite images. Cotton SmartIrrigation App (Cotton App) is one of the recent applications that have been developed to help farmers in scheduling irrigation during the growing season. The App is based on an interactive ET-based soil water balance model. In this study, remote sensing of Evapotranspiration has been used to detect and map crop water requirements in order to enhance the Cotton App predictions for irrigation schedule during the growing season. Two remote sensing ET models based on thermal infrared (TIR), The surface energy balance algorithm for land (SEBAL) and Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC), were used to derive ET over cotton. Results showed higher values of actual Evapotranspiration calculated by both SEBAL and METRIC models during the first 45 days of the growing season compared to the calculated values of ETa from crop coefficient. This is expected to be due to the higher evaporation fraction from bare soil since the plant cover is still very low and accordingly the plant transpiration too. However, later in the second growing stage, the models showed that the crop coefficient calculated ETa (ETa- Calculated) has overestimated the plant Evapotranspiration giving higher values compared to the values from the models. These results indicate that, the use of remote sensing techniques along with the ET-models will increase the app efficiency in giving more precise irrigation scheduling.</p>


Climate ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 20
Author(s):  
Kleoniki Demertzi ◽  
Vassilios Pisinaras ◽  
Emanuel Lekakis ◽  
Evangelos Tziritis ◽  
Konstantinos Babakos ◽  
...  

Simple formulas for estimating annual actual evapotranspiration (AET) based on annual climate data are widely used in large scale applications. Such formulas do not have distinct compartments related to topography, soil and irrigation, and for this reason may be limited in basins with high slopes, where runoff is the dominant water balance component, and in basins where irrigated agriculture is dominant. Thus, a simplistic method for assessing AET in both natural ecosystems and agricultural systems considering the aforementioned elements is proposed in this study. The method solves AET through water balance based on a set of formulas that estimate runoff and percolation. These formulas are calibrated by the results of the deterministic hydrological model GLEAMS (Groundwater Loading Effects of Agricultural Management Systems) for a reference surface. The proposed methodology is applied to the country of Greece and compared with the widely used climate-based methods of Oldekop, Coutagne and Turk. The results show that the proposed methodology agrees very well with the method of Turk for the lowland regions but presents significant differences in places where runoff is expected to be very high (sloppy areas and areas of high rainfall, especially during December–February), suggesting that the proposed method performs better due to its runoff compartment. The method can also be applied in a single application considering irrigation only for the irrigated lands to more accurately estimate AET in basins with a high percentage of irrigated agriculture.


2012 ◽  
Vol 16 (8) ◽  
pp. 2485-2497 ◽  
Author(s):  
B. Leterme ◽  
D. Mallants ◽  
D. Jacques

Abstract. The sensitivity of groundwater recharge to different climate conditions was simulated using the approach of climatic analogue stations, i.e. stations presently experiencing climatic conditions corresponding to a possible future climate state. The study was conducted in the context of a safety assessment of a future near-surface disposal facility for low and intermediate level short-lived radioactive waste in Belgium; this includes estimation of groundwater recharge for the next millennia. Groundwater recharge was simulated using the Richards based soil water balance model HYDRUS-1D and meteorological time series from analogue stations. This study used four analogue stations for a warmer subtropical climate with changes of average annual precipitation and potential evapotranspiration from −42% to +5% and from +8% to +82%, respectively, compared to the present-day climate. Resulting water balance calculations yielded a change in groundwater recharge ranging from a decrease of 72% to an increase of 3% for the four different analogue stations. The Gijon analogue station (Northern Spain), considered as the most representative for the near future climate state in the study area, shows an increase of 3% of groundwater recharge for a 5% increase of annual precipitation. Calculations for a colder (tundra) climate showed a change in groundwater recharge ranging from a decrease of 97% to an increase of 32% for four different analogue stations, with an annual precipitation change from −69% to −14% compared to the present-day climate.


2015 ◽  
Vol 19 (9) ◽  
pp. 3829-3844 ◽  
Author(s):  
J. Hoogeveen ◽  
J.-M. Faurès ◽  
L. Peiser ◽  
J. Burke ◽  
N. van de Giesen

Abstract. GlobWat is a freely distributed, global soil water balance model that is used by the Food and Agriculture Organization (FAO) to assess water use in irrigated agriculture, the main factor behind scarcity of freshwater in an increasing number of regions. The model is based on spatially distributed high-resolution data sets that are consistent at global level and calibrated against values for internal renewable water resources, as published in AQUASTAT, the FAO's global information system on water and agriculture. Validation of the model is done against mean annual river basin outflows. The water balance is calculated in two steps: first a "vertical" water balance is calculated that includes evaporation from in situ rainfall ("green" water) and incremental evaporation from irrigated crops. In a second stage, a "horizontal" water balance is calculated to determine discharges from river (sub-)basins, taking into account incremental evaporation from irrigation, open water and wetlands ("blue" water). The paper describes the methodology, input and output data, calibration and validation of the model. The model results are finally compared with other global water balance models to assess levels of accuracy and validity.


2018 ◽  
Author(s):  
Fabien Maussion ◽  
Anton Butenko ◽  
Julia Eis ◽  
Kévin Fourteau ◽  
Alexander H. Jarosch ◽  
...  

Abstract. Despite of their importance for sea-level rise, seasonal water availability, and as source of geohazards, mountain glaciers are one of the few remaining sub-systems of the global climate system for which no globally applicable, open source, community-driven model exists. Here we present the Open Global Glacier Model (OGGM, http://www.oggm.org), developed to provide a modular and open source numerical model framework for simulating past and future change of any glacier in the world. The modelling chain comprises data downloading tools (glacier outlines, topography, climate, validation data), a preprocessing module, a mass-balance model, a distributed ice thickness estimation model, and an ice flow model. The monthly mass-balance is obtained from gridded climate data and a temperature index melt model. To our knowledge, OGGM is the first global model explicitly simulating glacier dynamics: the model relies on the shallow ice approximation to compute the depth-integrated flux of ice along multiple connected flowlines. In this paper, we describe and illustrate each processing step by applying the model to a selection of glaciers before running global simulations under idealized climate forcings. Even without an in-depth calibration, the model shows a very realistic behaviour. We are able to reproduce earlier estimates of global glacier volume by varying the ice dynamical parameters within a range of plausible values. At the same time, the increased complexity of OGGM compared to other prevalent global glacier models comes at a reasonable computational cost: several dozens of glaciers can be simulated on a personal computer, while global simulations realized in a supercomputing environment take up to a few hours per century. Thanks to the modular framework, modules of various complexity can be added to the codebase, allowing to run new kinds of model intercomparisons in a controlled environment. Future developments will add new physical processes to the model as well as tools to calibrate the model in a more comprehensive way. OGGM spans a wide range of applications, from ice-climate interaction studies at millenial time scales to estimates of the contribution of glaciers to past and future sea-level change. It has the potential to become a self-sustained, community driven model for global and regional glacier evolution.


2018 ◽  
Author(s):  
Miga Magenika Julian ◽  
Fumihiko Nishio ◽  
Poerbandono ◽  
Philip J. Ward

In 2008, a presidential regulation number 54 (Peraturan Presiden Nomor 54 Tahun 2008 - Perpres 54/2008) that regulates uses of land for various degrees of utilization and conservation across Jakarta, Bogor, Depok, Tangerang, Bekasi, Puncak and Cianjur (Jabodetabekpuncur) was issued. Perpres 54/2008 is a reference for the implementation of development related to water and soil conservation, the availability of ground water and surface water, flood prevention, and economic development for the welfare of the community. This study was intended to investigate the effects of land use planning in Perpres 54/2008 on river discharges based on spatial simulation of the Ciliwung and Cisadane watersheds. Three evaluation points for each watershed were investigated: downstream, middle and upper watersheds. Here, we simulated the river discharge at 100m×100m resolution with land use data in year 2007. A calibrated spatial water balance model named Spatial Tools for River Basins and Environment and Analysis of Management Option (STREAM) was used for river discharge simulation. The inputs of this model were climate data (precipitation and temperature), land use and topography. Two scenarios of land use were used, the actual land use condition (i.e. year 2007) and planned land use according to Perpres 54/2008. Based on Perpres 54/2008 simulation scenario, if land use planned in Perpres 54/2008 have successfully implemented, it can reduces river discharge by 0.1% to 5.6%.


2015 ◽  
Vol 12 (1) ◽  
pp. 801-838 ◽  
Author(s):  
J. Hoogeveen ◽  
J.-M. Faurès ◽  
L. Peiser ◽  
J. Burke ◽  
N. van de Giesen

Abstract. GlobWat is a freely distributed, global soil water balance model that is used by FAO to assess water use in irrigated agriculture; the main factor behind scarcity of freshwater in an increasing number of regions. The model is based on spatially distributed high resolution datasets that are consistent at global level and calibrated against values for Internal Renewable Water Resources, as published in AQUASTAT, FAO's global information system on water and agriculture. Validation of the model is done against mean annual river basin outflows. The water balance is calculated in two steps: first a "vertical" water balance is calculated that includes evaporation from in situ rainfall ("green" water) and incremental evaporation from irrigated crops. In a second stage, a "horizontal" water balance is calculated to determine discharges from river (sub-)basins, taking into account incremental evaporation from irrigation, open water and wetlands ("blue" water). The paper describes methodology, input and output data, calibration and validation of the model. The model results are finally compared with other global water balance models.


2019 ◽  
Vol 12 (3) ◽  
pp. 909-931 ◽  
Author(s):  
Fabien Maussion ◽  
Anton Butenko ◽  
Nicolas Champollion ◽  
Matthias Dusch ◽  
Julia Eis ◽  
...  

Abstract. Despite their importance for sea-level rise, seasonal water availability, and as a source of geohazards, mountain glaciers are one of the few remaining subsystems of the global climate system for which no globally applicable, open source, community-driven model exists. Here we present the Open Global Glacier Model (OGGM), developed to provide a modular and open-source numerical model framework for simulating past and future change of any glacier in the world. The modeling chain comprises data downloading tools (glacier outlines, topography, climate, validation data), a preprocessing module, a mass-balance model, a distributed ice thickness estimation model, and an ice-flow model. The monthly mass balance is obtained from gridded climate data and a temperature index melt model. To our knowledge, OGGM is the first global model to explicitly simulate glacier dynamics: the model relies on the shallow-ice approximation to compute the depth-integrated flux of ice along multiple connected flow lines. In this paper, we describe and illustrate each processing step by applying the model to a selection of glaciers before running global simulations under idealized climate forcings. Even without an in-depth calibration, the model shows very realistic behavior. We are able to reproduce earlier estimates of global glacier volume by varying the ice dynamical parameters within a range of plausible values. At the same time, the increased complexity of OGGM compared to other prevalent global glacier models comes at a reasonable computational cost: several dozen glaciers can be simulated on a personal computer, whereas global simulations realized in a supercomputing environment take up to a few hours per century. Thanks to the modular framework, modules of various complexity can be added to the code base, which allows for new kinds of model intercomparison studies in a controlled environment. Future developments will add new physical processes to the model as well as automated calibration tools. Extensions or alternative parameterizations can be easily added by the community thanks to comprehensive documentation. OGGM spans a wide range of applications, from ice–climate interaction studies at millennial timescales to estimates of the contribution of glaciers to past and future sea-level change. It has the potential to become a self-sustained community-driven model for global and regional glacier evolution.


Author(s):  
Angelo B. Alface ◽  
Silvio B. Pereira ◽  
Roberto Filgueiras ◽  
Fernando F. Cunha

ABSTRACT The use of satellite images as a complement in irrigation management constitutes a primordial basis in the decision-making process for irrigated agriculture. In this context, the present study aimed to monitor through Normalized Difference Vegetation Index (NDVI) an irrigated sugarcane field belonging to the Mafambisse company, located at the District of Nhamatanda/Sofala, Republic of Mozambique, and establish its relationship with the crop coefficient established by FAO (kcFAO) and fit a regression model to estimate crop coefficient (kc) from the relationship between NDVI and kcFAO. The study was conducted using a series of Sentinel-2A/MSI images, relative to the period from October 2016 to October 2017. Based on the NDVI images generated, it was possible to monitor the sugarcane crop in the field and analyse the sensitivity of the index to its vegetative vigor. A similar pattern was observed between kcFAO profiles and NDVI values, which allowed the adjustment to be performed, demonstrating that this index is an alternative to obtain the crop coefficient.


2018 ◽  
Vol 61 (2) ◽  
pp. 533-548 ◽  
Author(s):  
J. Burdette Barker ◽  
Christopher M. U. Neale ◽  
Derek M. Heeren ◽  
Andrew E. Suyker

Abstract. Accurate generation of spatial soil water maps is useful for many types of irrigation management. A hybrid remote sensing evapotranspiration (ET) model combining reflectance-based basal crop coefficients (Kcbrf) and a two-source energy balance (TSEB) model was modified and validated for use in real-time irrigation management. We modeled spatial ET for maize and soybean fields in eastern Nebraska for the 2011-2013 growing seasons. We used Landsat 5, 7, and 8 imagery as remote sensing inputs. In the TSEB, we used the Priestly-Taylor (PT) approximation for canopy latent heat flux, as in the original model formulations. We also used the Penman-Monteith (PM) approximation for comparison. We compared energy balance fluxes and computed ET with measurements from three eddy covariance systems within the study area. Net radiation was underestimated by the model when data from a local weather station were used as input, with mean bias error (MBE) of -33.8 to -40.9 W m-2. The measured incident solar radiation appeared to be biased low. The net radiation model performed more satisfactorily when data from the eddy covariance flux towers were input into the model, with MBE of 5.3 to 11.2 W m-2. We removed bias in the daily energy balance ET using a dimensionless multiplier that ranged from 0.89 to 0.99. The bias-corrected TSEB ET, using weather data from a local weather station and with local ground data in thermal infrared imagery corrections, had MBE = 0.09 mm d-1 (RMSE = 1.49 mm d-1) for PM and MBE = 0.04 mm d-1 (RMSE = 1.18 mm d-1) for PT. The hybrid model used statistical interpolation to combine the two ET estimates. We computed weighting factors for statistical interpolation to be 0.37 to 0.50 for the PM method and 0.56 to 0.64 for the PT method. Provisions were added to the model, including a real-time crop coefficient methodology, which allowed seasonal crop coefficients to be computed with relatively few remote sensing images. This methodology performed well when compared to basal crop coefficients computed using a full season of input imagery. Water balance ET compared favorably with the eddy covariance data after incorporating the TSEB ET. For a validation dataset, the magnitude of MBE decreased from -0.86 mm d-1 (RMSE = 1.37 mm d-1) for the Kcbrf alone to -0.45 mm d-1 (RMSE = 0.98 mm d-1) and -0.39 mm d-1 (RMSE = 0.95 mm d-1) with incorporation of the TSEB ET using the PM and PT methods, respectively. However, the magnitudes of MBE and RMSE were increased for a running average of daily computations in the full May-October periods. The hybrid model did not necessarily result in improved model performance. However, the water balance model is adaptable for real-time irrigation scheduling and may be combined with forecasted reference ET, although the low temporal frequency of satellite imagery is expected to be a challenge in real-time irrigation management. Keywords: Center-pivot irrigation, ET estimation methods, Evapotranspiration, Irrigation scheduling, Irrigation water balance, Model validation, Variable-rate irrigation.


Sign in / Sign up

Export Citation Format

Share Document