Temperature Effect on Seed Germination Performance of a Local Variety of Onion in Bangladesh

2021 ◽  
Vol 1 (01) ◽  
pp. 27-30
Author(s):  
IRANI KHATUN ◽  
RIYAD HOSSEN

Seed germination performance test of Taherpuri onion (a local variety of onion) under six different temperatures (15, 20, 25, 30, 35 and 40°C) was the main goal of this experiment. Germination percentage (GP) was calculated at highest 60.25% at 25°C, and the highest germination rate 20.08 was observed in the same temperature condition. The lowest germination performance (13.25 % germi-nation and 3.32 seeds per day as germination rate) was found at 40°C temperature. Finally, the authors mentioned the temperature 20 to 30°C as optimum range, and suggested the temperature 25°C as best suited for obtaining highest results in case of both germination percentage and germination rate of these seeds. To produce maximum seedlings of the local variety of onion, the mentioned temperature should be followed by the local farmers.

2016 ◽  
Vol 44 (1) ◽  
pp. 291-295 ◽  
Author(s):  
Ljiljana RADIVOJEVIC ◽  
Marija SARIC-KRSMANOVIC ◽  
Jelena GAJIC UMILJENDIC ◽  
Dragana BOZIC ◽  
Ljiljana SANTRIC

The effects of different temperatures (20 °C, 25 °C, 30 °C, 35 °C and photoperiod 26 °C/21 °C), types of soil (sand and loam) and soil herbicides (oxyfluorfen, terbuthylazine and mesotrione) on seed germination percentage, germination rate, as well as seedling length and weight of common milkweed (Asclepias syriaca L.) were examined. Over a period of ten days, germinated seeds were counted daily, and seedling length and weight were measured on the final day and germination rate calculated. The results indicated that temperature was the factor that significantly affected the percentage of germinated seeds of common milkweed, seedling length and germination rate, while it had less influence on seedling weight. The results showed that the alternating day/night temperature of 26 °C/21 °C also had a significant impact as the percentage of germinated seeds was the highest at that temperature on both soil types (sand: 71.3%; loam: 61.3%). Data regarding the herbicides tested (oxyfluorfen, terbuthylazine and mesotrione) showed decreasing germination percentage and seedling length with increasing herbicide concentrations on both soil types. Their effect was weakest on seedling weight. Tested herbicides are usable in control of common milkweed at the stages of germination and early establishment.


1992 ◽  
Vol 2 (1) ◽  
pp. 15 ◽  
Author(s):  
L Valbuena ◽  
R Tarrega ◽  
E Luis

The influence of high temperatures on germination of Cistus laurifolius and Cistus ladanifer seeds was analyzed. Seeds were subjected to different temperatures for different times, afterwards they were sowed in plastic petri dishes and monitored for germinated seeds over two months.The germination rate observed in Cistus ldanifer was greater than in Cistus laurifolius. In both species, heat increased germination percentages. For Cistus laurifolius higher temperatures or longer exposure times were needed. Germination percentages of Cistus ladanifer were lower when heat exposure time was 15 minutes.It must be emphasized that germination occurred when seeds were not treated, while seeds exposed to 150�C for 5 minutes or more did not germinate.


1975 ◽  
Vol 5 (3) ◽  
pp. 419-423 ◽  
Author(s):  
Carey Borno ◽  
Iain E. P. Taylor

Stratified, imbibed Douglas fir (Pseudotsugamenziesii (Mirb.) Franco) seeds were exposed to 100% ethylene for times between 0 and 366 h. Germination rate and germination percentage were increased by treatments up to 48 h. The 12-h treatment gave largest stimulation; 30% enhancement of final germination percentage over control. Treatment for 96 h caused increased germination rate for the first 5 days but reduced the germination percentage. Germinants were subject to continuous exposure to atmospheres containing 0.1 – 200 000 ppm ethylene in air, but it did not stimulate growth, and the gas was inhibitory above 100 ppm. Although some effects of high concentrations of ethylene may have been due to the lowering of oxygen supplies, this alone was insufficient to account for the full inhibitory effect. The mechanism of stimulation by short-term exposure to ethylene is discussed.


2021 ◽  
Vol 43 ◽  
Author(s):  
Nancy Araceli Godínez-Garrido ◽  
Juan Gabriel Ramírez-Pimentel ◽  
Jorge Covarrubias-Prieto ◽  
Francisco Cervantes-Ortiz ◽  
Artemio Pérez-López ◽  
...  

Abstract: Chitosan is a biopolymer obtained from deacetylation of chitin; it has multiple applications in agriculture as an antifungal, soil conditioner, inducer of defense mechanisms, fruits postharvest coating, leaves and seeds, among others. The objective in this research was to evaluate the effect of chitosan coatings mixed with fungicide (dithiocarbamate) on the germination and germination speed of bean and maize seeds in storage and to determine the retention capacity of the fungicide in the coated seeds under different times of imbibition. Two coating treatments at concentrations of 0.1 and 0.5% chitosan in water, two coatings treatments at 0.1 and 0.5% chitosan supplemented with 0.5% fungicide and a coating without chitosan using only 0.5% fungicide in water were used in bean and maize seed; and as control seeds imbibed in distilled water were used; after treatments, germination percentage and germination speed were determined, also fungicide release were determined at 0, 1, 2 and 6 h of imbibition, and the effect of storage time on germination and germination speed was determined at 30, 60, 90, 120, 150 and 180 days of storage at 4 °C and 45% relative humidity. The fungicide release effect was determined by inhibiting Fusarium oxysporum conidia germination. There were no negative effects of coatings on seed germination after storage. The treatment that provided both greater retention of the fungicidal agent and released it gradually, was 0.5% chitosan mixed with fungicide concentration. Chitosan coating seeds mixed with fungicide do not cause negative changes in seed germination or germination rate.


2012 ◽  
Vol 40 (2) ◽  
pp. 220 ◽  
Author(s):  
Rade S. STANISAVLJEVIC ◽  
Savo M. VUCKOVIC ◽  
Aleksandar S. SIMIC ◽  
Jordan P. MARKOVIC ◽  
Zelijco P. LAKIC ◽  
...  

Efficient germination of fescue seeds is essential for successful establishment of meadows and pastures. This research was conducted to ascertain the effects of various acid and temperature treatments on seed germination in three fescue species: Festuca rubra, F. ovina, and F. pratensis. Seeds from different cultivars, populations, or lots were exposed either to four concentrations of sulfuric acid at three different time intervals (12 treatments) or six different temperatures at three different time intervals (18 treatments). Despite all belonging to the genus Festuca, the seed from different species responded differently to the treatments. The three optimum treatments for F. rubra seed involved soaking in a 75% solution of sulfuric acid for 20 minutes (improved the germination rate by 19%), soaking in a 50% solution of sulfuric acid for 30 minutes (improved the germination rate by 18%) and exposure to either 60°C or 70°C for 90 minutes (improved the germination rate by 17%). For F. ovina seed, optimal treatments included soaking seeds for either 10 or 20 minutes in a 50% sulfuric acid solution (both treatments improved germination rates by 13%) or exposing seeds for 30 minutes in a 25% sulfuric acid solution and 80°C for 60 minutes (improved germination rate by 12%). Two optimal treatments were identified for F. pratensis seed. Whereas the first involved soaking the seeds in a 75% sulfuric acid solution for 30 minutes (improved germination rates by 22%), the second involved either exposing the seeds to 90°C for 90 or 60 minutes, or exposing the seeds to 80°C for 90 minutes (improved germination rate by 21%). Our findings indicate that if fescue seed is to be sown during the autumn (two to three months after seed collecting), treating it with acid and temperature can significantly enhance its germination.


2010 ◽  
Vol 46 (2) ◽  
pp. 231-242 ◽  
Author(s):  
S. J. GOUSSOUS ◽  
N. H. SAMARAH ◽  
A. M. ALQUDAH ◽  
M. O. OTHMAN

SUMMARYA laboratory experiment was conducted to determine the effect of ultrasound (US) treatment on seed germination of chickpea, wheat, pepper and watermelon. All tests were carried out at 40 kHz in a water bath ultrasonic device varying two factors, treatment duration (5, 10, 15, 30, 45 or 60 min) and germination temperature (15 or 20 °C). Parallel tests were run in which seeds were soaked in water without sonication in order to eliminate the effect of water from US test results. The effects of US on seed germination varied between crops and were more obvious on germination speed, expressed as germination rate index (GRI), rather than on germination percentage (GP). In particular, US treatment significantly increased the GRI of chickpeas, wheat and watermelon, resulting in a maximum increase of 133% (at 45 min), 95% (30 min) and 45% (5 min), respectively, above control seeds. The beneficial effects of US on the GRI of these crops were observed at both 15 and 20 °C, suggesting that US treatment offers a practical priming method to overcome the slow germination that may occur at low temperatures. Water-soaking treatment improved the GP of both chickpea and pepper seeds by 59 and 24%, respectively, compared to the control but neither water nor US had any positive effect on pepper GRI. Post-treatment measurement of moisture content of these seeds produced variable results depending on crop species and US treatment duration. Results of this research indicated that US treatment effectively enhanced speed of germination of chickpea, wheat and watermelon seeds. This increase in speed of germination may improve early field establishment of these crops in the semiarid Mediterranean region and thus needs further investigation. The US technique may also be very useful for plant propagators in nurseries to achieve fast seedling establishment of watermelon.


2016 ◽  
Vol 76 (2) ◽  
pp. 367-373 ◽  
Author(s):  
A. B. Lone ◽  
R. C. Colombo ◽  
B. L. G. Andrade ◽  
L. S. A. Takahashi ◽  
R. T. Faria

Abstract The germination characteristics of the native cactus species are poorly known, being the temperature and the light the factors that the most interferes in that process. Thus, the objective of the present work was to characterize the fruits and evaluate the influence of the temperature and the light in the seed germination of Rhipsalis floccosa, Rhipsalis pilocarpa and Rhipsalis teres. The tested constant temperatures were 15, 20, 25, 30 and 35 °C and the alternate of 20-30 °C and 25-35 °C in a photoperiod of 10 hours, and with determination of the most appropriate temperature, the germination was tested in light absence. The germination percentage, the index of germination speed and medium time of germination were evaluated. For R. floccosa, the highest germination percentage was at 20 °C. For R. pilocarpa and R. teres, the highest germination percentages occurred in 15 °C and 20 °C. There was correlation to germination percentage between the three species, indicating that they had similar germination behavior. Total absence of germination was verified for the three species in condition of light absence. In conclusion, the temperature of 20 °C is the most suitable for the seed germination of R. floccosa. For the species R. pilocarpa and R. teres, the temperatures of 15 and 20 °C are the most suitable.


Horticulturae ◽  
2021 ◽  
Vol 7 (11) ◽  
pp. 490
Author(s):  
Saeng Geul Baek ◽  
Jin Hyun Im ◽  
Myeong Ja Kwak ◽  
Cho Hee Park ◽  
Mi Hyun Lee ◽  
...  

This study aimed to determine the type of seed dormancy and to identify a suitable method of dormancy-breaking for an efficient seed viability test of Lysimachia coreana Nakai. To confirm the effect of gibberellic acid (GA3) on seed germination at different temperatures, germination tests were conducted at 5, 15, 20, 25, 20/10, and 25/15 °C (12/12 h, light/dark), using 1% agar with 100, 250, and 500 mg·L−1 GA3. Seeds were also stratified at 5 and 25/15 °C for 6 and 9 weeks, respectively, and then germinated at the same temperature. Seeds treated with GA3 demonstrated an increased germination rate (GR) at all temperatures except 5 °C. The highest GR was 82.0% at 25/15 °C and 250 mg·L−1 GA3 (4.8 times higher than the control (14.0%)). Additionally, GR increased after cold stratification, whereas seeds did not germinate after warm stratification at all temperatures. After cold stratification, the highest GR was 56.0% at 25/15 °C, which was lower than the GR observed after GA3 treatment. We hypothesized that L. coreana seeds have a non-deep physiological dormancy and concluded that 250 mg·L−1 GA3 treatment is more effective than cold stratification (9 weeks) for L. coreana seed-dormancy-breaking.


2013 ◽  
Vol 55 (2) ◽  
pp. 75-80 ◽  
Author(s):  
Ertan Yildirim ◽  
Atilla Dursun ◽  
Metin A. Kumlay ◽  
Ísmail Güvenç

This research was conducted to determine the effects of two biostimulants (humic acid and biozyme) or three different salt (NaCl) concentrations at the temperature 10, 15, 20 and 25°C on parsley, leek, celery, tomato, onion, lettuce, basil, radish and garden cress seed germination. Two applications of both biostimulants increased seed germination of parsley, celery and leek at all temperature treatments. Germination rate decreased depending on high salt concentrations. At different salt and temperature levels garden cress was characterised by the highest germination percentage compared to other vegetable species.Interactions between NaCl concentrations and temperatures, as welI as biostimulants and temperatures were significant at p=0.001 in for all vegetable species except onion in NaCl concentrations and temperatures compared to that of the control.


Forests ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 521
Author(s):  
Lucie Bauerová ◽  
Shiferaw Alem Munie ◽  
Kateřina Houšková ◽  
Hana Habrová

Research highlights: This study is focused on the germination of Dracaena cinnabari seeds in order to discover the possibility of natural and artificial regeneration of this species. Background and Objectives: This study aimed to determine the optimal temperature for D. cinnabari seed germination, e.g., the temperature at which the germination percentage and germination rate (vitality) are the highest. The objectives of this study are to: (1) determine the optimal temperature for the germination of D. cinnabari seeds, (2) compare the suitability of different seed collection methods, and (3) compare the germination parameters of seeds that were collected from different localities. The results of this study will contribute to obtaining the highest number of seedlings from limited seed material for reforestation of the most endangered localities of D. cinnabari species. Materials and methods: Four seed sections were employed. These sections were directly collected from either the fruits of a cut panicle or the ground and were obtained from different localities that differ in altitude. The seeds were tested in a greenhouse while using Petri dishes at three different temperatures—22, 26, and 30 °C—with four replicates of 25 seeds of each section. ANOVA and the t-test were employed for data analysis. Results: The highest germination percentages (GPs) were achieved at 26 °C and 30 °C, which were 84.6% and 82.5%, respectively. The ANOVA and t-test results showed that the germination index (GI) of the species was relatively higher at a temperature of 30 °C relative to that at other temperatures in the study. Although seeds that were collected from the tree achieved a higher GP, the t-test result showed no significant differences in the GI of D. cinnabari seeds that were collected from the ground and from the tree (p > 0.05). Overall, the findings of this study show that temperature has substantial influence on the germination of seeds of D. cinnabari. Therefore, we recommend a temperature of 30 °C to facilitate the germination of D. cinnabari, as it achieved the highest GI at this temperature relative to that at the other temperatures (22 °C, 26 °C) applied in this study.


Sign in / Sign up

Export Citation Format

Share Document