A study of aerobic and anaerobic bacteria in diabetic foot ulcer and in vitro sensitivity of antimicrobial agent

Author(s):  
Aasha Halpati ◽  
Kairavi Desai ◽  
Ravindra Jadeja ◽  
Mayur Parmar
2021 ◽  
Vol 592 ◽  
pp. 120091
Author(s):  
Noha S. El-Salamouni ◽  
Mennatallah A. Gowayed ◽  
Nevine L. Seiffein ◽  
Rehab A. Abdel- Moneim ◽  
Maher A. Kamel ◽  
...  

Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2128 ◽  
Author(s):  
Mostafa Mabrouk ◽  
Pradeep Kumar ◽  
Yahya E. Choonara ◽  
Lisa C. du Toit ◽  
Viness Pillay

The present work aims to electrospin a triple layered wound patch for potential treatment of diabetic foot ulcers (DFU). The patch consisted of poly(acrylic acid) (PAA) as the skin contacting layer, polyvinyl pyrrolidone (PVP) as the middle layer, and polycaprolactone (PCL) as the outermost layer, wherein the PVP layer was loaded in situ with an antibiotic (ciprofloxacin, CFX). Morphology and mechanical properties were investigated using SEM and texture analysis. Patch quality was studied with regards to wettability, adherence, water resistance, and moisture uptake of individual layers. SEM results confirmed the fibrous and membranous nature of layers with a nano-to-micro size range. Mechanical properties of the composite patch demonstrated a tensile strength of 12.8 ± 0.5 MPa, deformation energy of 54.35 ± 0.1 J/m3, and resilience of 17.8 ± 0.7%, which were superior compared to individual layers. Patch quality tests revealed that the PCL layer showed very low wettability, adherence, and moisture uptake compared to the PVP and PAA layers. In vitro drug release data revealed an increase in cumulative drug release with higher drug loading. The results above confirm the potential of a triple layered, tripolymeric, wound patch for DFU intervention.


2021 ◽  
Vol 75 ◽  
pp. 362-370
Author(s):  
Marta Margas ◽  
Marta Wróblewska ◽  
Halina Marchel ◽  
Beata Mrozikiewicz-Rakowska ◽  
Piotr Ładyżyński ◽  
...  

Background: Complications of infected wounds in patients with diabetic foot ulcer (DFU) are one of the greatest challenges in modern medicine. Analysis of the microbiological profile of infected ulcers may significantly improve treatment results. The aim of the study was to determine the profile of pathogens isolated in patients with DFU and to compare the results of other centers. Materials and Methods: A retrospective study was carried out on 137 patients with DFU hospitalized at the Department of Diabetology and Internal Diseases, Medical University of Warsaw in 2011-2014. The analysis included the results of 200 microbiological cultures tested for fungi, aerobic and anaerobic bacteria. Statistical analysis was used to test differences in HbA1c values in relation to the strain of the most commonly cultured bacteria and the relationship between glycemic control and most frequently isolated pathogens. Results: Seventy-nine bacterial species were isolated in 183 positive cultures. Gram-negative bacteria predominated with the highest percentage of representatives of Enterobacterales. The most often isolated bacteria were Serratia marcescens, Pseudomonas aeruginosa, Proteus mirabilis and methicillin-susceptible Staphylococcus aureus. The Kruskal-Wallis test revealed that HbA1c concentrations were different in groups infected with different strains of bacteria (p = 0.0087). Isolation of Escherichia coli and Morganella morganii was more often associated with poor control of diabetes. Conclusions: The study revealed statistically significant differences in the frequency of microorganisms isolated from the wounds of patients with DFU. The discrepancies in the results of other studies published in this field indicate the need for standardization of the research design.


2021 ◽  
Vol 11 (15) ◽  
pp. 6847
Author(s):  
Ahdab N. Khayyat ◽  
Hisham A. Abbas ◽  
Mamdouh F. A. Mohamed ◽  
Hani Z. Asfour ◽  
Maan T. Khayat ◽  
...  

Diabetic foot ulcers are recognized to be a severe complication of diabetes, increasing the risk of amputation and death. The bacterial infection of Diabetic foot ulcers with virulent and resistant bacteria as Proteus mirabilis greatly worsens the wound and may not be treated with conventional therapeutics. Developing new approaches to target bacterial virulence can be helpful to conquer such infections. In the current work, we evaluated the anti-virulence activities of the widely used antibacterial metronidazole. The minimum inhibitory concentrations (MIC) and minimum biofilm eradication concentrations (MEBC) were determined for selected antibiotics which P. mirabilis was resistant to them in the presence and absence of metronidazole in sub-MIC. The effect of metronidazole in sub-MIC on P. mirabilis virulence factors as production of exoenzymes, motilities, adhesion and biofilm formation, were evaluated. Furthermore, molecular docking of metronidazole into P. mirabilis adhesion and essential quorum sensing (QS) proteins, was performed. The results revealed a significant ability of metronidazole to in-vitro inhibit P. mirabilis virulence factors and antagonize its essential proteins. Moreover, metronidazole markedly decreased the MICs and MBECs of tested antibiotics. Conclusively, metronidazole in sub-MIC is a plausible anti-virulence and anti-QS agent that can be combined to other antibiotics as anti-virulence adjuvant to defeat aggressive infections.


2021 ◽  
Author(s):  
Mariarosa Ruffo ◽  
Ortensia Ilaria Parisi ◽  
Marco Dattilo ◽  
Francesco Patitucci ◽  
Rocco Malivindi ◽  
...  

Abstract In diabetic patients, the presence of neuropathy, peripheral vascular diseases and ischemia, leads to the formation of foot ulcerations with a higher risk of infection because the normal response to bacterial infection is missing. In the aim to control and treat Diabetic Foot Ulcerations (DFUs), wound dressings able to absorb exudate, to prevent infections and to promote wound healing, are needed. For this reason, the aim of the present research was to synthetize a biocompatible hydrogel composed by Carboxymethylcellulose (HyDrO-DiAb) loaded with Silver nanoparticles (AgNPs) for the treatment of diabetic foot ulcer. In this study, AgNPs were obtained by a green synthesis and, then, were dissolved in CMC hydrogel that, after freeze drying process become a flexible and porous structure. The in vitro and in ex-vivo wound healing activity of the obtained HyDrO-DiAb hydrogel was evaluated.


2019 ◽  
Author(s):  
Hadi Samadian ◽  
Arian Ehterami ◽  
Saeed Farzamfar ◽  
Ahmad Vaez ◽  
Hossein Khastar ◽  
...  

AbstractFunctional dressing with tailored physicochemical and biological properties is vital for diabetic foot ulcer (DFU) treatment. Our main objective in the current study was to fabricate Cellulose Acetate/Gelatin (CA/Gel) electrospun nanofibrous mat loaded with berberine (Beri) as the DFU dressing. The results demonstrated that the diameter of the nanofibers was around 502 nm, the tensile strength, contact angle, porosity, water vapor permeability, and water uptake ratio of CA/Gel nanofibers were around 2.83 MPa, 58.07, 78.17 %, 11.23 mg/cm2 hr, and 12.78 respectively, while these values for CA/Gel/Beri nanofibers were 2.69 ± 0.05 MPa, 56.93 ± 1, 76.17 ± 0.76 %, 10.17 ± 0.21 mg/cm2 hr, 14.37 ± 0.42 respectively. The bacterial evaluations demonstrated that the dressings are an excellent barrier against bacterial penetration with potent antibacterial activity. The animal studies depicted that the collagen density and angiogenesis score in the CA/Gel/Beri treated group were 88.8±6.7 % and 19.8±3.8, respectively. These findings implied that the incorporation of berberine did not compromise the physical properties of dressing, while improving the biological activates. In conclusion, our findings implied that the prepared mat is a proper wound dressing for DFU management and treatment.


2020 ◽  
Author(s):  
Ruijuan Si ◽  
Jing Han ◽  
Xue Zhang ◽  
Fang Ji ◽  
Xu Yang ◽  
...  

Abstract Objective: To explore the application of metronidazole gel in the healing of chronic foot wounds.Methods: On the basis of reviewing the previous literature, routine debridement care and local application of metronidazole gel were applied to two patients with foot wounds and observations of wound healing were made. The wound of patient A was a deep wound, and the wound of patient B was a diabetic foot ulcer complicated by gangrene.Results: The bleeding and exudate of the patient with a deep wound gradually disappeared, and the wound healed. In the patient with the diabetic foot ulcer, the bleeding and exudate decreased. This was followed by the gradual size reduction of the wound and the formation of a scab over the large wound size.Conclusion: Metronidazole gel was effective in wound resolution of anaerobic bacteria infected wounds. It can serve as a way to relieve patients' pain with a promising therapeutic effect. The effectiveness of metronidazole in the treatment of deep wounds and diabetic foot patients requires further and larger-scale research studies to confirm the findings shown here.


Sign in / Sign up

Export Citation Format

Share Document