scholarly journals Elongation and load deflection characteristics of reinforced concrete members containing plastic hinges

Author(s):  
R. C. Fenwick ◽  
L. M. Megget

In regions, described as plastic hinge zones, in beams and columns, tensile yielding of the reinforcement through flexural action can occur in severe earthquakes. Where the beams and columns are lightly loaded, axially, member elongation can occur. Test results show that axial extensions of the order of several percent of the member depth may be expected. This deformation, which is ignored in current design practice, can have a major influence on the distribution of forces in a structure and its ability to survive without collapse. This paper describes the way in which elongation develops in plastic hinge zones together with the form of load deflection characteristics associated with the development of different types of plastic hinge zone.

2013 ◽  
Vol 798-799 ◽  
pp. 374-377
Author(s):  
Shuan Jiang

The ultimate tendon stress is the key to calculation of flexural capacity in reinforced concrete beam prestressed with external FRP tendons (RCBPEFT). Based on the theory of equivalent plastic hinge zone, the general formulas for calculating the ultimate tendon stress increment and ultimate tendon stress in RCBPEFT are therefore proposed. Comparisons indicate that the predictions are in good agreement with the test results.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3255 ◽  
Author(s):  
Fang Yuan ◽  
Mengcheng Chen

Fibre-reinforced polymer (FRP)-reinforced concrete members exhibit low ductility due to the linear-elastic behaviour of FRP materials. Concrete members reinforced by hybrid FRP–steel bars can improve strength and ductility simultaneously. In this study, the plastic hinge problem of hybrid FRP–steel reinforced concrete beams was numerically assessed through finite element analysis (FEA). Firstly, a finite element model was proposed to validate the numerical method by comparing the simulation results with the test results. Then, three plastic hinge regions—the rebar yielding zone, concrete crushing zone, and curvature localisation zone—of the hybrid reinforced concrete beams were analysed in detail. Finally, the effects of the main parameters, including the beam aspect ratio, concrete grade, steel yield strength, steel reinforcement ratio, steel hardening modulus, and FRP elastic modulus on the lengths of the three plastic zones, were systematically evaluated through parametric studies. It is determined that the hybrid reinforcement ratio exerts a significant effect on the plastic hinge lengths. The larger the hybrid reinforcement ratio, the larger is the extent of the rebar yielding zone and curvature localisation zone. It is also determined that the beam aspect ratio, concrete compressive strength, and steel hardening ratio exert significant positive effects on the length of the rebar yielding zone.


2004 ◽  
Vol 10 (3) ◽  
pp. 209-215
Author(s):  
Hau Yan Leung

Although much research on concrete beams reinforced with fibre‐reinforced polymer (FRP) rods has been conducted in recent years, their use still does not receive the attention it deserves from practicising engineers. This is attributed to the fact that FRP is brittle in nature and the collapse of FRP‐reinforced concrete member may be catastrophic. A rational beam design can incorporate a hybrid use of FRP rods and steel rods. Current design codes only deal with steel‐reinforced or FRP‐reinforced concrete members. Therefore in this study some design charts and equations for concrete beam sections reinforced with FRP rods and steel rebars were generated. Results from the theoretical derivations agreed well with experimental data.


The plastic hinge is a key concept of the theory of frames that differentiates this theory from the remaining models for structural analysis. This chapter is exclusively dedicated to define this concept and describe the different models of plastic hinges. It also discusses the differences of implementation between plastic hinges in steel frames (Sections 6.1-6.4) and those in reinforced concrete structures (Sections 6.5-6.6). This chapter is based on the ideas presented in Chapter 5 and it allows formulating the models for elasto-plastic frames that are introduced in the next chapter.


1996 ◽  
Vol 23 (6) ◽  
pp. 1172-1179 ◽  
Author(s):  
R. Masmoudi ◽  
B. Benmokrane ◽  
O. Chaallal

This paper presents the results of an experimental investigation on the cracking behaviour of concrete beams reinforced with fiber reinforced plastic rebars. The effects of reinforcement ratio on the cracking pattern, crack spacing, cracking moment, and crack width are investigated. The test results indicate that the reinforcement ratio has no meaningful effect on the cracking moment, which can be calculated as recommended by the ACI code. Also, the use of the equations adopted by ACI and the European codes for the prediction of crack width of conventionally reinforced concrete members is investigated and due modifications are made. Both relationships show good correlation with the test results; and the prediction of crack width of concrete beams reinforced with these two types of fiber reinforced plastic rebars is now possible. Key words: beam, cracking behaviour, cracking moment, crack width, fiber reinforced plastic, flexure, rebars, reinforced concrete, reinforcement ratio.


2013 ◽  
Vol 699 ◽  
pp. 173-178
Author(s):  
Yue Li ◽  
Zhong Wei Gu ◽  
Xian Ming Qin

In order to investigate the corrosion performance of reinforced concrete in the marine environment, the seawater hot rain testing (SHRT) equipment was used to imitate the marine environment and accelerate corrosion rate by circularly spraying seawater to the samples under high temperatures which can attain 70°C. The test results show that SHRT can accelerate the chloride ion permeability which can quickly investigate the corrosion performance of reinforced concrete. Different types of material admixtures have different influences on the corrosion performance of reinforcement concrete, and rust inhibitor and cementitious capillary crystalline material can improve the anti-rust resistance of reinforced concrete effectively.


Author(s):  
Jung-Kyun Kim ◽  
Hak-Eun Lee

Recently, cast-in-steel shell (CISS) pile has been used as the foundation of bridges and a pier is directly connected to the pile. In this case, plastic hinge is generally formed at the connection between the CISS pile and reinforced concrete pier. To increase the flexural capacity of such structure, a proper improvement method is necessary for the connection. In this study, a steel tube, a steel pipe that has 270mm diameter with 4.5mm thickness, has been used to enhance flexural capacity of the connection and the effect by the such method was evaluated through cyclic compression-bending test. From the test results, it can be found that the flexure capacity is considerably increased by applying the steel tube at the connection when it was compared to a general reinforced concrete (RC) pier with 10% larger diameter cross-section.


2014 ◽  
Vol 13 (3) ◽  
pp. 151-158
Author(s):  
Marta Słowik

In the paper, the influence of longitudinal reinforcement on shear capacity of reinforced concrete members without shear reinforcement is discussed. The problem is analyzed on the basis of the author’s own test results and tests results reported in the professional literature. It has been concluded that longitudinal reinforcement has an effect on shear capacity especially in members of shear span-to-depth ratio a/d < 2,5. The test results have also been used to verify standard methods of calculating the shear capacity in reinforced concrete members without shear reinforcement given in Eurocode 2, ACI Standard 318 and Model Code 2010.


Author(s):  
Leslie M. Megget

Four external reinforced concrete beam-column sub-assemblages were tested under pseudo seismic cyclic loading. The approximately 2/3 scale units incorporated the new Grade 500E reinforcing steel as the beam bars. Two different forms of beam bar anchorage were tested, the normal 90-degree "standard hook" and the continuous U-bar detail. In all units the farthest point of the beam bar anchorage was positioned at the minimum limit prescribed in the NZ Concrete Standard (NZS3101), namely ¾ of the column depth from the inner column face. All 4 units formed plastic hinges in the beam and joint degradation was minor. Failure occurred at drift ratios between 4 and 6% (approximate ductility factors of between 4 and 6) predominantly due to buckling of the beam bars in the plastic hinge zone. The stiffness of these units was significantly less than similar units reinforced with 300E Grade reinforcing or the recently replaced 430 MPa reinforcement. The decreased stiffness will cause higher lateral drifts during large earthquakes, than those anticipated in current Standards.


2008 ◽  
Vol 45 (12) ◽  
pp. 1715-1722 ◽  
Author(s):  
Sven Krabbenhoft ◽  
Allan Andersen ◽  
Lars Damkilde

Three series of 10 piles each were installed in two different locations. The lengths of the piles varied from 2 to 6 m and the diameters were 14 and 25 cm. The piles were constructed above the groundwater table using continuous flight augers and the concrete was placed by gravity free fall. The piles were tested to failure in axial uplift and the load–displacement relations were recorded. The results from the tests have been compared with theoretical values based on current design practice and the method proposed by Fleming et al. seems to produce the best match with the test results.


Sign in / Sign up

Export Citation Format

Share Document