scholarly journals Evaporite rocks as a factor in formation of non-structural traps

Author(s):  
E. A. Sidorchuk ◽  
◽  
M. E. Seliverstova ◽  

The paper considers the improvement in classification of oil and gas traps formed in non-anticlinal conditions. The relevant aim is to expand the areas where hydrocarbon accumulations are searched for and to take into account the new search attributes. Evaporite rocks, widely developed in many oil and gas basins, have properties that contribute to the preservation of hydrocarbon deposits. Depending on the structural features of the salt formations, their impact on the location of oil and gas deposits varies. The deposits associated with the evaporite rocks are analyzed. Types of traps, the main factor in formation of which are evaporites, are defined. Such traps are proposed to be treated as a separate category. Keywords: evaporite rocks; non-structural and combined traps; hydrocarbon accumulations; classifications of traps; tectonic style; sealed reservoirs.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdulkadir Tasdelen ◽  
Baha Sen

AbstractmiRNAs (or microRNAs) are small, endogenous, and noncoding RNAs construct of about 22 nucleotides. Cumulative evidence from biological experiments shows that miRNAs play a fundamental and important role in various biological processes. Therefore, the classification of miRNA is a critical problem in computational biology. Due to the short length of mature miRNAs, many researchers are working on precursor miRNAs (pre-miRNAs) with longer sequences and more structural features. Pre-miRNAs can be divided into two groups as mirtrons and canonical miRNAs in terms of biogenesis differences. Compared to mirtrons, canonical miRNAs are more conserved and easier to be identified. Many existing pre-miRNA classification methods rely on manual feature extraction. Moreover, these methods focus on either sequential structure or spatial structure of pre-miRNAs. To overcome the limitations of previous models, we propose a nucleotide-level hybrid deep learning method based on a CNN and LSTM network together. The prediction resulted in 0.943 (%95 CI ± 0.014) accuracy, 0.935 (%95 CI ± 0.016) sensitivity, 0.948 (%95 CI ± 0.029) specificity, 0.925 (%95 CI ± 0.016) F1 Score and 0.880 (%95 CI ± 0.028) Matthews Correlation Coefficient. When compared to the closest results, our proposed method revealed the best results for Acc., F1 Score, MCC. These were 2.51%, 1.00%, and 2.43% higher than the closest ones, respectively. The mean of sensitivity ranked first like Linear Discriminant Analysis. The results indicate that the hybrid CNN and LSTM networks can be employed to achieve better performance for pre-miRNA classification. In future work, we study on investigation of new classification models that deliver better performance in terms of all the evaluation criteria.


Author(s):  
Sherif Fakher ◽  
Abdelaziz Khlaifat ◽  
M. Enamul Hossain ◽  
Hashim Nameer

AbstractIn many oil reservoirs worldwide, the downhole pressure does not have the ability to lift the produced fluids to the surface. In order to produce these fluids, pumps are used to artificially lift the fluids; this method is referred to as artificial lift. More than seventy percent of all currently producing oil wells are being produced by artificial lift methods. One of the most applied artificial lift methods is sucker rod pump. Sucker rod pumps are considered a well-established technology in the oil and gas industry and thus are easy to apply, very common worldwide, and low in capital and operational costs. Many advancements in technology have been applied to improve sucker rod pumps performance, applicability range, and diagnostics. With these advancements, it is important to be able to constantly provide an updated review and guide to the utilization of the sucker rod pumps. This research provides an updated comprehensive review of sucker rod pumps components, diagnostics methods, mathematical models, and common failures experienced in the field and how to prevent and mitigate these failures. Based on the review conducted, a new classification of all the methods that can fall under the sucker rod pump technology based on newly introduced sucker rod pump methods in the industry has been introduced. Several field cases studies from wells worldwide are also discussed in this research to highlight some of the main features of sucker rod pumps. Finally, the advantages and limitations of sucker rod pumps are mentioned based on the updated review. The findings of this study can help increase the understanding of the different sucker rod pumps and provide a holistic view of the beam rod pump and its properties and modeling.


2021 ◽  
pp. 23-31
Author(s):  
Y. I. Gladysheva

Nadym-Pursk oil and gas region has been one of the main areas for the production of hydrocarbon raw materials since the sixties of the last century. A significant part of hydrocarbon deposits is at the final stage of field development. An increase in gas and oil production is possible subject to the discovery of new fields. The search for new hydrocarbon deposits must be carried out taking into account an integrated research approach, primarily the interpretation of seismic exploration, the creation of geological models of sedimentary basins, the study of geodynamic processes and thermobaric parameters. Statistical analysis of geological parameters of oil and gas bearing complexes revealed that the most promising direction of search are active zones — blocks with the maximum sedimentary section and accumulation rate. In these zones abnormal reservoir pressures and high reservoir temperatures are recorded. The Cretaceous oil and gas megacomplex is one of the main prospecting targets. New discovery of hydrocarbon deposits are associated with both additional exploration of old fields and the search for new prospects on the shelf of the north. An important area of geological exploration is the productive layer of the Lower-Berezovskaya subformation, in which gas deposits were discovered in unconventional reservoirs.


GeoArabia ◽  
2009 ◽  
Vol 14 (3) ◽  
pp. 199-228 ◽  
Author(s):  
Mohammad Faqira ◽  
Martin Rademakers ◽  
AbdulKader M. Afifi

ABSTRACT During the past decade, considerable improvements in the seismic imaging of the deeper Paleozoic section, along with data from new well penetrations, have significantly improved our understanding of the mid-Carboniferous deformational event. Because it occurred at the same time as the Hercynian Orogeny in Europe, North Africa and North America it has been commonly referred to by the same name in the Middle East. This was the main tectonic event during the late Paleozoic, which initiated or reactivated many of the N-trending block uplifts that underlie the major hydrocarbon accumulations in eastern Arabia. The nature of the Hercynian deformation away from these structural features was poorly understood due to inadequate seismic imaging and insufficient well control, along with the tectonic overprint of subsequent deformation events. Three Hercynian NE-trending arches are recognized in the Arabian Plate (1) the Levant Arch, which extended from Egypt to Turkey along the coast of the Mediterranean Sea, (2) the Al-Batin Arch, which extended from the Arabian Shield through Kuwait to Iran, and (3) the Oman-Hadhramaut Arch, which extended along the southeast coast of Oman and Yemen. These arches were initiated during the mid-Carboniferous Hercynian Orogeny, and persisted until they were covered unconformably by the Khuff Formation during the Late Permian. Two Hercynian basins separate these arches: the Nafud-Ma’aniya Basin in the north and Faydah-Jafurah Basin in the south. The pre-Hercynian Paleozoic section was extensively eroded over the arches, resulting in a major angular unconformity, but generally preserved within the basins. Our interpretation suggests that most of the Arabian Shield, except the western highlands along the Red Sea, is the exhumed part of the Al-Batin Arch. The Hercynian structural fabric of regional arches and basins continue in northern Africa, and in general appear to be oriented orthogonal to the old margin of the Gondwana continent. The Hercynian structure of arches and basins was partly obliterated by subsequent Mesozoic and Cenozoic tectonic events. In eastern Saudi Arabia, Qatar, and Kuwait, regional extension during the Triassic formed N-trending horsts and graben that cut across the NE-trending Hercynian mega-structures, which locally inverted them. Subsequent reactivation during the Cretaceous and Neogene resulted in additional growth of the N-trending structures. The Hercynian Arches had major impact on the Paleozoic hydrocarbon accumulations. The Silurian source rocks are generally preserved in the basins and eroded over the arches, which generally confined Silurian-sourced hydrocarbons either within the basins or along their flanks. Furthermore, the relict Hercynian paleo-topography generally confined the post-Hercynian continental clastics of the Unayzah Formation and equivalents to the Hercynian basins. These clastics contain the main Paleozoic oil and gas reservoirs, particularly along the basin margins where they overlie the sub-crop of the Silurian section with angular unconformity, thus juxtaposing reservoir and source rock.


Author(s):  
Yu.R. Vladov ◽  
◽  
M.Yu. Nesterenko ◽  
Yu.M. Nesterenko ◽  
A.Yu. Vladova ◽  
...  

The predominant area of application of the developed methodology is the construction of the distribution of the geodynamic state of the developed hydrocarbon fields in oil and gas basin, and the identification of the corresponding distribution law. A number of the hydrocarbon deposits in terms of geological conditions of occurrence, structure and other parameters are geodynamically hazardous during their development. The Federal Law «On Subsurface Resources» (Article 24) requires conducting a complex of geological, surveying, and other observations sufficient for ensuring a normal technological cycle of work, and the prediction of hazardous situations. The developed methodology based on the construction of aggregated additive models for each reservoir and field is presented. It includes four sequential stages (24 operations): first — prepare geodynamic data; second — determine the geodynamic state of productive strata; third — find the geodynamic state of the developed deposits subsoil; fourth — build the distribution of the bowels geodynamic state of these fields for the entire oil and gas basin and identify the relevant distribution law. Oil and gas basin in the west of the Orenburg Region (Volga — Ural and Caspian oil and gas provinces) is considered as an example of implementation. Unique data of twenty geodynamic parameters of 320 productive strata (56 fields) were used. It is revealed that in accordance with the Pearson criterion, the theoretical data with a high confidence probability (95 %) correspond to the law of normal distribution. Developed methodology has significant technical and economic advantages, since it allows to identify the geodynamic state of productive strata and subsoil of the fields being developed, to identify hazardous geodynamic processes and to choose rational modes for the development of hydrocarbon deposits.


Author(s):  
M. Yu. Kharitonovа ◽  
◽  
N. A. Matsko ◽  

For resources in the exploration stage, the modern “Classification of reserves” requires determining the economic efficiency of development prospects. Calculations of the development efficiency are based on the development time, which is difficult to determine without technological projects and schemes due to insufficient initial data. The identification of development stages in the preliminary economic assessment is carried out on the basis of expert appraisals without precise criteria, by analogy with the fields under development. The article establishes empirical dependencies and shows the possibility of their use for express forecast of the period for finishing work on a field (deposit), duration of the main development period, duration of the increasing production stage. Dependencies allow solving the problem of constructing a production curve in conditions of limited geological data. The express method can be used at the macro level to develop strategies for the development of oil and gas regions and at the micro level in the economic assessment of the prospects for the development of objects.


2021 ◽  
pp. 13-22
Author(s):  
R. M. Bembel ◽  
S. R. Bembel ◽  
M. I. Zaboeva ◽  
E. E. Levitina

Based on the well-known results of studies of the ether-geosoliton concept of the growing Earth, the article presents the conclusions that made it possible to propose a model of thermonuclear synthesis of chemical elements that form renewable reserves of developed oil and gas fields. It was revealed that local zones of abnormally high production rates of production wells and, accordingly, large cumulative production at developed fields in Western Siberia are due to the restoration of recoverable reserves due to geosoliton degassing. Therefore, when interpreting the results of geological and geophysical studies, it is necessary to pay attention to the identified geosoliton degassing channels, since in the works of R. M. Bembel and others found that they contributed to the formation of a number of hydrocarbon deposits in Western Siberia. When interpreting the results of geological-geophysical and physicochemical studies of the fields being developed, it is recommended to study the data of the ring high-resolution seismic exploration technology in order to identify unique areas of renewable reserves, which can significantly increase the component yield of hydrocarbon deposits.


2020 ◽  
Author(s):  
Sudad H Al-Obaidi

Practical value of this work consists in increasing the efficiency of exploration for oil and gas fields in Eastern Baghdad by optimizing and reducing the complex of well logging, coring, sampling and well testing of the formation beds and computerizing the data of interpretation to ensure the required accuracy and reliability of the determination of petrophysical parameters that will clarify and increase proven reserves of hydrocarbon fields in Eastern Baghdad. In order to calculate the most accurate water saturation values for each interval of Zubair formation, a specific modified form of Archie equation corresponding to this formation was developed.


Sign in / Sign up

Export Citation Format

Share Document