scholarly journals Identification and Classification of Complex Agricultural Croplands Using Multi-Temporal ALOS-2/PALSAR-2 Data: A Case Study in Central Java, Indonesia

2018 ◽  
Vol 10 (2) ◽  
pp. 58
Author(s):  
Prima Rizky Mirelva ◽  
Ryota Nagasawa

The agriculture sector makes a significant contribution to the Indonesian economy and has become one of the sources of national income. Therefore, precise agricultural mapping is very important to national and regional administrations. Satellite remote sensing provides the most effective tool for identifying a wide expanse of agriculture croplands. However, cloud coverage in tropical regions limits the use of optical remote sensing. SAR is an active remote sensing technique, which offers completely cloud-free observation data. The multi-temporal ALOS-2/PALSAR-2 data were used in this study, complemented by optical multi-temporal remote sensing data, that is, Landsat 8 OLI for classifying complex agricultural croplands. The study area, located in the Klaten Regency, Central Java Province, with 112 km2 coverage, was selected because of its dynamic cropping pattern and complex agricultural land use types. In this study, the RGB composite of HH, HV and HV-HH, derived from ALOS-2/PALSAR-2 polarizations, was found to be effective at separating two types of paddy field cropping pattern: all-year paddy (paddy-I) and paddy upland fields (paddy-II). The multi-temporal Landsat 8 data were also found to be useful for observing the cropping pattern. Moreover, the classification accuracy, which was as high as 85.02% in terms of overall accuracy, with a kappa coefficient of 0.824, from multi-temporal ALOS-2/PALSAR-2 data, was obtained. These results show that multi-temporal ALOS-2/PALSAR-2 data are capable of discriminating between two different paddy field cropping types, as well as beneficial for discriminating between the cropping stage and cropping pattern information for several other land uses.

Author(s):  
Pham Vu Dong ◽  
Bui Quang Thanh ◽  
Nguyen Quoc Huy ◽  
Vo Hong Anh ◽  
Pham Van Manh

Cloud detection is a significant task in optical remote sensing to reconstruct the contaminated cloud area from multi-temporal satellite images. Besides, the rapid development of machine learning techniques, especially deep learning algorithms, can detect clouds over a large area in optical remote sensing data. In this study, the method based on the proposed deep-learning method called ODC-Cloud, which was built on convolutional blocks and integrating with the Open Data Cube (ODC) platform. The results showed that our proposed model achieved an overall 90% accuracy in detecting cloud in Landsat 8 OLI imagery and successfully integrated with the ODC to perform multi-scale and multi-temporal analysis. This is a pioneer study in techniques of storing and analyzing big optical remote sensing data.


Author(s):  
I. D. Sanches ◽  
R. Q. Feitosa ◽  
P. Achanccaray ◽  
B. Montibeller ◽  
A. J. B. Luiz ◽  
...  

<p><strong>Abstract.</strong> The monitoring of agricultural activities at a regular basis is crucial to assure that the food production meets the world population demands, which is increasing yearly. Such information can be derived from remote sensing data. In spite of topic’s relevance, not enough efforts have been invested to exploit modern pattern recognition and machine learning methods for agricultural land-cover mapping from multi-temporal, multi-sensor earth observation data. Furthermore, only a small proportion of the works published on this topic relates to tropical/subtropical regions, where crop dynamics is more complicated and difficult to model than in temperate regions. A major hindrance has been the lack of accurate public databases for the comparison of different classification methods. In this context, the aim of the present paper is to share a multi-temporal and multi-sensor benchmark database that can be used by the remote sensing community for agricultural land-cover mapping. Information about crops in situ was collected in Luís Eduardo Magalhães (LEM) municipality, which is an important Brazilian agricultural area, to create field reference data including information about first and second crop harvests. Moreover, a series of remote sensing images was acquired and pre-processed, from both active and passive orbital sensors (Sentinel-1, Sentinel-2/MSI, Landsat-8/OLI), correspondent to the LEM area, along the development of the main annual crops. In this paper, we describe the LEM database (crop field boundaries, land use reference data and pre-processed images) and present the results of an experiment conducted using the Sentinel-1 and Sentinel-2 data.</p>


2020 ◽  
Vol 38 (4A) ◽  
pp. 510-514
Author(s):  
Tay H. Shihab ◽  
Amjed N. Al-Hameedawi ◽  
Ammar M. Hamza

In this paper to make use of complementary potential in the mapping of LULC spatial data is acquired from LandSat 8 OLI sensor images are taken in 2019.  They have been rectified, enhanced and then classified according to Random forest (RF) and artificial neural network (ANN) methods. Optical remote sensing images have been used to get information on the status of LULC classification, and extraction details. The classification of both satellite image types is used to extract features and to analyse LULC of the study area. The results of the classification showed that the artificial neural network method outperforms the random forest method. The required image processing has been made for Optical Remote Sensing Data to be used in LULC mapping, include the geometric correction, Image Enhancements, The overall accuracy when using the ANN methods 0.91 and the kappa accuracy was found 0.89 for the training data set. While the overall accuracy and the kappa accuracy of the test dataset were found 0.89 and 0.87 respectively.


2020 ◽  
Vol 3 (1) ◽  
pp. 11-23 ◽  
Author(s):  
Abdulla Al Kafy ◽  
Abdullah Al-Faisal ◽  
Mohammad Mahmudul Hasan ◽  
Md. Soumik Sikdar ◽  
Mohammad Hasib Hasan Khan ◽  
...  

Urbanization has been contributing more in global climate warming, with more than 50% of the population living in cities. Rapid population growth and change in land use / land cover (LULC) are closely linked. The transformation of LULC due to rapid urban expansion significantly affects the functions of biodiversity and ecosystems, as well as local and regional climates. Improper planning and uncontrolled management of LULC changes profoundly contribute to the rise of urban land surface temperature (LST). This study evaluates the impact of LULC changes on LST for 1997, 2007 and 2017 in the Rajshahi district (Bangladesh) using multi-temporal and multi-spectral Landsat 8 OLI and Landsat 5 TM satellite data sets. The analysis of LULC changes exposed a remarkable increase in the built-up areas and a significant decrease in the vegetation and agricultural land. The built-up area was increased almost double in last 20 years in the study area. The distribution of changes in LST shows that built-up areas recorded the highest temperature followed by bare land, vegetation and agricultural land and water bodies. The LULC-LST profiles also revealed the highest temperature in built-up areas and the lowest temperature in water bodies. In the last 20 years, LST was increased about 13ºC. The study demonstrates decrease in vegetation cover and increase in non-evaporating surfaces with significantly increases the surface temperature in the study area. Remote-sensing techniques were found one of the suitable techniques for rapid analysis of urban expansions and to identify the impact of urbanization on LST.


Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 312
Author(s):  
Barbara Wiatkowska ◽  
Janusz Słodczyk ◽  
Aleksandra Stokowska

Urban expansion is a dynamic and complex phenomenon, often involving adverse changes in land use and land cover (LULC). This paper uses satellite imagery from Landsat-5 TM, Landsat-8 OLI, Sentinel-2 MSI, and GIS technology to analyse LULC changes in 2000, 2005, 2010, 2015, and 2020. The research was carried out in Opole, the capital of the Opole Agglomeration (south-western Poland). Maps produced from supervised spectral classification of remote sensing data revealed that in 20 years, built-up areas have increased about 40%, mainly at the expense of agricultural land. Detection of changes in the spatial pattern of LULC showed that the highest average rate of increase in built-up areas occurred in the zone 3–6 km (11.7%) and above 6 km (10.4%) from the centre of Opole. The analysis of the increase of built-up land in relation to the decreasing population (SDG 11.3.1) has confirmed the ongoing process of demographic suburbanisation. The paper shows that satellite imagery and GIS can be a valuable tool for local authorities and planners to monitor the scale of urbanisation processes for the purpose of adapting space management procedures to the changing environment.


2021 ◽  
Vol 9 (1) ◽  
pp. 3093-3105
Author(s):  
Westi Utami ◽  
Yuli Ardianto Wibowo ◽  
Ahmad Haris Hadi ◽  
Fajar Buyung Permadi

Expansion of industrial areas, aquaculture, settlements, and limited knowledge of the community about the function of mangroves allegedly led to the conversion of mangrove functions in the early 1990s. This study aimed to map the condition of mangroves from 1988, 1990, 1995, 2008, to 2021 and their effect on the widespread of tidal flooding in three villages (Mangkang Kulon, Mangunharjo, Mangkang Wetan) in Tugu subdistrict, Semarang City. The research method was carried out by using spatiotemporal analysis of Landsat 5 and Landsat 8 imagery through the supervised approach (Maximum Likelihood algorithm). In order to map the correlation of mangrove damage with the widespread impact of tidal flooding, an overlay analysis of land use maps was carried out in 1988, 1990, 1995, 2008 and 2021. The results of the study showed that mangrove damage is correlated with the widespread of tidal flooding that drowns settlements, ponds, and agricultural land. Data analysis showed that the mangrove area in three villages has decreased from 1988 to 2021, covering an area of 242.66 ha. This condition is one of the triggers for the increase in tidal flooding area from 1988 to 2021, covering an area of 253.135 ha. As a natural barrier to prevent abrasion and tidal flooding, mangrove conservation is very necessary, considering the impact of tidal flooding on the coast of Semarang City is increasingly widespread.


2020 ◽  
Vol 27 (2) ◽  
pp. 1-7
Author(s):  
M. Haruna ◽  
M.K. Ibrahim ◽  
U.M. Shaibu

This study applied GIS and remote sensing technology to assess agricultural land use and vegetative cover in Kano Metropolis. It specifically examined the intensity of land use for agricultural and non agricultural purpose from 1975 – 2015. Images (1975, 1995 and 2015), landsat MSS/TM, landsat 8, scene of path 188 and 052 were downloaded for the study. Bonds for these imported scenes were processed using ENVI 5.0 version. The result indicated five classified features-settlement, farmland, water body, vegetation and bare land. The finding revealed an increase in settlement, vegetation and bare land between 1995 and 2015, however, farmland decreased in 2015. Indicatively, higher percentage of land use for non agricultural purposes was observed in recent time. Conclusively, there is need to accord surveying the rightful place and priority in agricultural planning and development if Nigeria is to be self food sufficient. Keywords: Geographic Information System, Agriculture, Remote sensing, Land use, Land cover


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 417 ◽  
Author(s):  
Mohamed Abdelkareem ◽  
Fathy Abdalla ◽  
Samar Y. Mohamed ◽  
Farouk El-Baz

At present, the Arabian Peninsula is one of the driest regions on Earth; however, this area experienced heavy rainfall in the past thousand years. During this period, catchments received substantial amounts of surface water and sustained vast networks of streams and paleolakes, which are currently inactive. The Advanced Land Observing Satellite (ALOS) Phased Array Type L-band Synthetic Aperture Radar (PALSAR) data reveal paleohydrologic features buried under shallow aeolian deposits in many areas of the ad-Dawasir, Sahba, Rimah/Batin, and as-Sirhan wadis. Optical remote-sensing data support that the middle of the trans-peninsula Wadi Rimah/Batin, which extends for ~1200 km from the Arabian Shield to Kuwait and covers ~200,000 km2, is dammed by linear sand dunes formed by changes in climate conditions. Integrating Landsat 8 Operational Land Imager (OLI), Geo-Eye, Shuttle Radar Topography Mission (SRTM) digital elevation model, and ALOS/PALSAR data allowed for the characterization of paleodrainage reversals and diversions shaped by structural and volcanic activity. Evidence of streams abruptly shifting from one catchment to another is preserved in Wadi ad-Dawasir along the fault trace. Volcanic activity in the past few thousand years in northern Saudi Arabia has also changed the slope of the land and reversed drainage systems. Relics of earlier drainage directions are well maintained as paleoslopes and wide upstream patterns. This study found that paleohydrologic activity in Saudi Arabia is impacted by changes in climate and by structural and volcanic activity, resulting in changes to stream direction and activity. Overall, the integration of radar and optical remote-sensing data is significant for deciphering past hydrologic activity and for predicting potential water resource areas.


2020 ◽  
Author(s):  
Jieun Kim ◽  
Jaehyung Yu ◽  
Sang Kee Seo ◽  
Jin-Hee Baek ◽  
Byung Chil Jeon

&lt;p&gt;The climate change causes major problems in natural disasters such as storms and droughts and has significant impacts on agricultural activities. Especially, global warming changed crops cultivated causing changes in agricultural land-use, and droughts along with land-use change accompanied serious problems in irrigation management. Moreover, it is very problematic to detect drought impacted areas with field survey and it burdens irrigation management. In South Korea, drought in 2012 occurred in western area while 2015 drought occurred in eastern area. The drought cycle in Korea is irregular but the drought frequency has shown an increasing pattern. Remote sensing approaches has been used as a solution to detect drought areas in agricultural land-use and many approaches has been introduced for drought monitoring. This study introduces remote sensing approaches to detect agricultural drought by calculation of local threshold associated with agricultural land-use. We used Landsat-8 satellite images for drought and non-drought years, and Vegetation Health Index(VHI) was calculated using red, near-infrared, and thermal-infrared bands. The comparative analysis of VHI values for the same agricultural land-use between drought year and non-drought year derived the threshold values for each type of land-use. The results showed very effective detection of drought impacted areas showing distinctive differences in VHI value distributions between drought and non-drought years.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document