scholarly journals Using Salicylic Acid Treatment of Stored Canola Seed to Decrease the Adversely Effects on Oil quality under Long-Term Storage, High Storage Temperature and Seed Moisture Contents

2013 ◽  
Vol 6 (1) ◽  
Author(s):  
Fathy Saad El-Nakhlawy ◽  
Adel Daifallah Al-Qurashi
2022 ◽  
Vol 31 ◽  
pp. 100770
Author(s):  
Lucas Mallmann Wendt ◽  
Vagner Ludwig ◽  
Fabiane Portella Rossato ◽  
Magno Roberto Pasquetti Berghetti ◽  
Erani Eliseu Schultz ◽  
...  

2004 ◽  
Vol 10 (4) ◽  
pp. 221 ◽  
Author(s):  
C. A. Offord ◽  
M. L. McKensy ◽  
P. V. Cuneo

This article reviews the germinability and viability of seeds of threatened species collections in the New South Wales (NSW) Seedbank with the manifold aims of: ensuring that existing storage treatments and conditions provide effective ex situ storage of threatened species seed; providing baseline viability and seed storage life data on threatened species; and, identifying research gaps in seed germination and storage protocols for threatened species and communities. The germinability and viability of a range of seed accessions, of various ages and stored under different (although mainly identifiable) conditions in the NSW Seedbank, was determined through germination and cut-tests. The results indicated that many of the Fabaceae, Myrtaceae and Proteaceae species tested are orthodox and can be stored at 5 to 10% moisture content at 5�C for up to ten years without significant loss of viability (short- to medium-term storage). The best results were obtained in the lower seed moisture content range (2 to 9%), which appeared to be especially critical for long-term storage of many Proteaceae accessions, reinforcing the need to attain the correct seed moisture content for long-term storage. Around 10% of accessions exhibited some degree of dormancy even after long storage periods. Storage of the widest range of species, for periods greater than ten years for long-term conservation purposes, is generally best conducted by storing at sub-zero temperatures. Freezing at -18�C had little effect on the germinability of a range of seeds tested and is recommended over storage at 5�C. Collection and seed banking procedures for the NSW Seedbank will be regularly reviewed and procedures modified in order to identify the best long-term storage conditions for species within this and other seedbanks. Seed collection strategies to maximize diversity and uses of seedbanks in conservation are discussed.


2016 ◽  
Vol 141 (2) ◽  
pp. 177-185 ◽  
Author(s):  
Yan Wang

Alternatives to ethoxyquin (Etq) are needed for controlling superficial scald of ‘Anjou’ european pears (Pyrus communis) during long-term storage. The current commercial standard storage conditions [Etq + −1 °C + controlled atmosphere (CA) with 1.5 kPa O2] reduced scald occurrence compared with control fruit (−1 °C + CA) during 6–8 months storage. At 1 °C in air, 1-methylcyclopropene (1-MCP) fumigation at 0.15 µL·L−1 at harvest was more efficient on reducing scald than Etq but did not prevent scald during 6–8 months storage. The 1-MCP-treated fruit at 1 °C in air developed their ripening capacity at 20 °C following 6–8 months storage but had deceased shipping ability (softening and yellowing of fruit). Although Etq inhibition of scald was associated with the inhibition of α-farnesene oxidation to conjugated trienols (CTols); 1-MCP reduced α-farnesene synthesis and thereby the availability of substrate to oxidize to CTols. CA storage at 1.5 kPa O2 totally prevented scald and retarded the loss of shipping ability without affecting the ripening capacity of 1-MCP-treated fruit at 1 °C through further decreases in the syntheses of ethylene, α-farnesene and CTols during 6–8 months storage. In addition, 1-MCP prevented a CA-induced disorder, pithy brown core (PBC), in ‘Anjou’ pears possibly through enhancing an oxidative/reductive metabolic balance during extended storage. In conclusion, the combinations of 1 °C + 1-MCP + CA is a potential commercial alternative to Etq for scald control while allowing the 1-MCP-treated ‘Anjou’ pears to recover ripening capacity during the shelf life period after 6–8 months storage.


1988 ◽  
Vol 6 (2) ◽  
pp. 39-41 ◽  
Author(s):  
James A. Robbins ◽  
Mark J. Campidonica ◽  
David W. Burger

Concentrated [4.9 mM (1,000 ppm) and 24.6 mM (5,000 ppm)] IBA solutions in 50% isopropyl alcohol were stored in amber and clear glass bottles at 3 temperatures [22–25°, 6°, O°C (72–77°, 43°, 32°F)]. No significant change in biological activity of the solutions or breakdown of IBA was observed for solutions stored for 4 and 6 months. Solution color changed during storage. Color development was dependant on storage temperature, but not on exposure to light. Chemical names used: IAA = indole-3-acetic acid; IBA = indole-3-butyric acid; NAA = 1-naphthaleneacetic acid


1996 ◽  
Vol 121 (5) ◽  
pp. 804-809 ◽  
Author(s):  
I. David van der Walt ◽  
Gail M. Littlejohn

The influence of storage temperature and humidity on pollen viability was studied in four Protea species. Pollen was stored at a range of temperatures and relative humidities for up to 1 year and tested for ability to germinate in vitro. Pollen of P. repens (L.) L. `Sneyd', P. eximia (Salisb. ex Knight) Fourcade `Fiery Duchess' and P. magnifica Link. clone T 84 07 05 stored at -196 °C and -14 to -18 °C retained a germination percentage as high as that of fresh pollen regardless of humidity. Humidity control became increasingly important at storage temperatures above 0 °C. The study showed that long-term storage of Protea pollen is not feasible at temperatures above 0 °C. The relationship between germinability and fluorochromasia (FCR) was studied during storage of `Sneyd' pollen. The correlations between FCR and germinability were found to be low and nonsignificant. Fifteen-month-old cryopreserved `Sneyd' pollen functioned in fertilization and seed set as effectively as fresh pollen.


2021 ◽  
pp. 1-12
Author(s):  
Hiaki Sato ◽  
Yoshiaki Norimatsu ◽  
Satoshi Irino ◽  
Takeshi Nishikawa

<b><i>Introduction/Objective:</i></b> Liquid-based cytology (LBC) is advantageous as multiple stained specimens can be prepared and used for additional assays such as immunocytochemical and molecular-pathological investigations. Two types of preservative-fixative solutions (fixatives) are used for nongynecologic specimens used in the BD SurePath-LBC (SP-LBC) method, and their components vary. However, few studies have evaluated the differences in antigen-retaining ability between these fixatives. Therefore, we investigated and compared the antigen-retaining ability of the fixatives in immunocytochemical staining (ICC) under long-term storage conditions. <b><i>Materials and Methods:</i></b> Sediments of cultured RAJI cells (derived from Burkitt’s lymphoma) were added to each fixative (red and blue) and stored at room temperature for a specified period (1 h; 1 week; and 1, 3, and 6 months). The specimens were then prepared using the SP-LBC method and subjected to ICC. Positivity rate was calculated using the specimens fixed at room temperature for 1 h as a control. Antibodies against Ki67 expressed in the nucleus and against CD20 and leukocyte common antigen (LCA) expressed on the cell membrane were used. <b><i>Results:</i></b> For CD20 and LCA, the positivity rate increased with time in the red fixative compared with that in the control. In the blue fixative, the positivity rate was highest at 1 h and was maintained at a high level throughout the storage period. In contrast, the Ki67 positivity rate was highest at 1 h in both red and blue fixatives and markedly decreased with time. Therefore, although refrigerated (8°C) storage was used, no improvement was noted. <b><i>Conclusions:</i></b> Long-term storage is possible for cell membrane antigens at room temperature; however, it is unsuitable for intranuclear antigens. Therefore, we conclude that suitable fixative type and storage temperature differ based on antigen location. Further investigation is warranted.


2018 ◽  
Vol 8 (9) ◽  
pp. 1662 ◽  
Author(s):  
Woon Yong Choi ◽  
Hyeon Yong Lee

A kinetic model was developed to reflect the stability of C-Phycocyanin (C-PC) from ultrasonic extraction process under different storage conditions. The decrease of C-PC contents was most accelerated at a high temperature of 40 °C along with light illumination, resulting in ca. 60% drop of an initial concentration for two months of storage. However, ca. 93% of the initial contents remained at 4 °C without light, which would be a most favorable condition for long-term storage. It was first shown that the decrease of the residual concentrations followed second-order kinetics under light illumination. However, without light, the decrease of the C-PC contents showed first order reaction kinetics, which implies initial C-PC concentrations are important. On the contrary, initial storage temperature seemed to be more influential under light illumination. It was also first revealed that the rate of degrading the C-PC was faster with light than without light even at the same temperature, having 0.0108 (1/h) and 0.0138 (1/h) of rate constants of first order (no light) and second order kinetics (with light) at 40 °C, respectively. Moreover, the cleavage of C-PC was also found to follow the Arrhenius relationship. Therefore, this work could provide desirable storage conditions of C-PC from non-thermal ultrasonic process for long-term storage.


Sign in / Sign up

Export Citation Format

Share Document